Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
Ta có:
Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn bằng 2.
Chọn B
Nếu m = 1 thì y = 1 (không thỏa mãn tổng của giá trị lớn nhất và nhỏ nhất bằng 8)
Nếu m ≠ 1 thì hàm số đã cho liên tục trên [1;2] và
Khi đó đạo hàm của hàm số không đổi dấu trên đoạn [1;2]
Do vậy
Chọn A
Ta có:
Với nên f(x) đồng biến trên ℝ
Với nên f(x) nghich biến trên ℝ
Suy ra: Vì f(x) nghich biến trên ℝ nên và
Từ đây ,ta suy ra:
=> chọn đáp án A
+ Ta có:
vì x < x 2 + 3 nên
Mà trên đoạn [1 ; 2] thì 0 ≤ ln x ≤ ln 2
=> y’ < 0 ; do đó hàm số đã cho nghịch biến trên đoạn [1, 2].
+ Hàm số đã cho liên tục và xác định trên đoạn [1 ;2]
Khi đó
Do đó
Chọn D
Chọn A
Từ đồ thị của hàm số y = f'(x) ta có bảng biến thiên của hàm số y = f(x) trên đoạn [-1;2] như sau
Nhận thấy
Để tìm ta so sánh f(-1) và f(2)
Theo giả thiết,
Từ bảng biến thiên , ta có f(0) - f(1) > 0. Do đó f(2) - f(-1) > 0