K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2016

     Đặt A=1+2+3+4+ ...+n=aaa

Ta có:1+2+3+4+ ...+n=aaa

         (1+n).n:2=a.111

         (1+n).n:2=a.3.37

         (1+n).n=a.3.37.2

   Vì a.3.37.2 chia hết cho 37

Nên (1+n).n cũng chia hết cho 37

           Vậy n hoặc ( n + 1 ) phải chia hết cho 37

Mà a.3.29.3.2

     \(\Rightarrow\) a.3.254

Nên n hoặc n+1 không thể là 74

              Ta có 36.37 hoặc 37.38

Vì 38 không chia hết cho 6 nên n=36 và n+1=37

     Vậy n = 36

15 tháng 5 2016

Ta có 1+2+3+...+n=aaa(n,aEN)

   <=>  n*(n+1):2=a*111

   <=>  n*(n+1):2=a*3*37

   <=>n*(n+1)=a*3*2*37

  <=>n*(n+1)=6a*37(1)

Mà n và n+1 là 2 số tự nhiên liên tiếp

Nên 6a và 37 cũng là 2 số tự nhiên liên tiếp 

=>6a=36 hoặc 6a=38

       a=6              a=19/3(loại vì aEN)

Thay a=6 vào (1) ta có

n*(n+1)=36*37

=>n=36

 

14 tháng 8 2020

Đề bài : Chứng minh rằng tổng lập phương của các số tự nhiên liên tiếp từ 1 đến n bằng bình phương của tổng từ 1 đến n ( n tự nhiên ). Hay ta cần chứng minh : \(1^3+2^3+3^3+4^3+....+n^3=\left(1+2+....+n\right)^2\) (*)

Lời giải : 

+) Xét \(n=1\) thì ta có : \(1^3=1^2\) ( đúng ) 

Suy ra (*) đúng với \(n=1\) (1)

+) Xét \(n=2\) ta có : \(1^3+2^3=1+8=9\)\(\left(1+2\right)^2=3^2=9\)

\(\Rightarrow1^3+2^3=\left(1+2\right)^2\) ( đúng ). Nên (*) đúng với \(n=2\) (2)

+) Giả sử (*) đúng với \(n=k\). Tức là : \(1^3+2^3+3^3+....+k^3=\left(1+2+...+k\right)^2\).

Ta cần chứng minh \(n=k+1\) cũng đúng với (*). Thật vậy , ta có :

\(1^3+2^3+3^3+.....+\left(k+1\right)^3\)

\(=1^3+2^3+....+k^3+\left(k+1\right)^3\)

\(=\left(1+2+3+....+k\right)^2+\left(k+1\right)^3\)

Xét biểu thức \(\left(k+1\right)^2+2.\left(k+1\right).\left(1+2+3+....+k\right)\)

\(=\left(k+1\right)^2+2.\left(k+1\right)\cdot\frac{\left(k+1\right).k}{2}\)

\(=\left(k+1\right)^2+\left(k+1\right)^2.k=\left(k+1\right)^3\)

Do đó \(1^3+2^3+....+\left(k+1\right)^3\)

\(=\left(1+2+3+....+k\right)^2+2.\left(k+1\right)\left(1+2+....+k\right)+\left(k+1\right)^2\)

\(=\left(1+2+3+....+k+k+1\right)^2\)

Vậy (*) đúng với \(n=k+1\) (3)

Từ (1) (2) và (3) suy ra \(1^3+2^3+3^3+4^3+....+n^3=\left(1+2+....+n\right)^2\) với mọi \(n\in N\).

10 tháng 10 2016

Gọi B là tổng các chữ số của A. Ta có A = 123456...9899100

Lúc này ta cần tính B = 1 + 2 + ... + 8 + 9 + 1 +0 +1 + 1 + ... + 9 + 9 + 1 + 0 + 0

Ta sẽ tính sác xuất xuất hiện ( tức tần số suất hiện ) của các chữ số 0 ; 1 ; 2 ; ... ; 8 ; 9

Ta sẽ thấy 0 xuất hiện 11 lần ; 1 xuất hiện 21 lần còn các chữ số còn lại là 2 ; 3 ;... ;9 thì xuất hiện 20 lần

Vậy B = 0 x 1 + 1 x 21 + ( 2 + 3 + ... + 9 ) x 20 = 901 ko chia hết cho 9 nên ko thể chia hết cho 2007

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Từ 4 chữ số 0, 1, 2, 3:

- Hàng trăm có 3 cách chọn.

- Hàng chục có 3 cách chọn.

- Hàng đơn vị có 2 cách chọn.

Vậy có tất cả 3.3.2 = 18 số tự nhiên khác nhau có 3 chữ số được lập từ 0, 1, 2, 3.

b) - Trường hợp 1: hàng đơn vị là số 0 như vậy hàng trăm có 3 cách chọn, hàng chục có 2 cách chọn.

Có tất cả 1. 2. 3 = 6 số có thể lập được.

- Trường hợp 2: hàng đơn vị là số 2 như vậy hàng trăm có 2 cách chọn, hàng chục có 2 cách chọn.

Có tất cả 1. 2. 2 = 4 số có thể lập được.

Vậy có thể lập 6 + 4 = 10 số tự nhiên chẵn có ba chữ số khác nhau.

TH1: 2 chẵn 2 lẻ

=>Có \(C^2_5\cdot C^2_4\cdot2=120\left(cách\right)\)

TH2: 3 lẻ, 1 chẵn

=>Có \(C^3_5\cdot4\cdot4!=960\left(cách\right)\)

TH3: 4 lẻ

=>Có \(C^4_5\cdot4!=120\left(cách\right)\)

=>Có 120+960+120=1200 cách

15 tháng 5 2023

 Gọi \(X=\left\{1,2,3,4,5,6,7\right\}\)

 Số các số có 4 chữ số khác nhau được lập từ các chữ số thuộc X là \(A^4_7=840\) 

 Ta tính số các số mà có 2 chữ số lẻ cạnh nhau.

 TH1: Số đó chỉ có 2 chữ số lẻ: Có \(3.A^2_4.A^2_3=216\) (số)

 TH2: Số đó có 3 chữ số lẻ: Có \(4.A^3_4.3=288\) (số)

 TH3: Cả 4 chữ số đều lẻ: Có \(4!=24\) (số)

Vậy có \(216+288+24=528\) số có 2 chữ số lẻ cạnh nhau. Suy ra có \(840-528=312\) số không có 2 chữ số liên tiếp nào cùng lẻ.

18 tháng 3 2023

Các chữ số từ 1 đến 9 có tổng cộng 9 chữ số. Để số có ba chữ số chia hết cho 3, tổng của các chữ số đó cũng phải chia hết cho 3.

Có hai trường hợp để tìm số thỏa mãn:

Trường hợp tổng ba số là 9: Có thể lập ra các số sau: 369, 639, 693, 963.

Trường hợp tổng ba số là 18: Có thể lập ra các số sau: 189, 279, 369, 459, 549, 639, 729, 819, 918.

Vậy có tổng cộng 9 số tự nhiên có 3 chữ số phân biệt và chia hết cho 3.

NV
18 tháng 3 2023

Chia các chữ số từ 1 đến 9 làm 3 tập \(A=\left\{3;6;9\right\}\) ; \(B=\left\{1;4;7\right\}\) ; \(C=\left\{2;5;8\right\}\)

Số có 3 chữ số chia hết cho 3 khi:

TH1: 3 chữ số của nó thuộc cùng 1 tập \(\Rightarrow3.3!=18\) số

TH2: 3 chữ số của nó thuộc 3 tập phân biệt:

Chọn ra mỗi tập một chữ số có \(3.3.3=27\) cách

Hoán vị 3 chữ số có: \(3!=6\) cách

\(\Rightarrow27.6=162\) số

Như vậy có tổng cộng \(18+162=180\) số thỏa mãn

NV
21 tháng 4 2023

Để cho dễ tính toán, ta coi như việc chọn 2 số là theo thứ tự

Không gian mẫu: \(A_{90}^2\)

Chọn số thứ nhất: \(C_{90}^1=90\) cách

Hàng đơn vị số thứ 2 có 1 cách chọn (giống hàng đơn vị số thứ nhất), hàng chục số thứ 2 có 8 cách chọn (khác hàng chục số thứ hai và 0)

\(\Rightarrow90.1.8\) cách chọn 2 số thỏa mãn yêu cầu

Xác suất: \(P=\dfrac{90.1.8}{A_{90}^2}\)

 

10 tháng 5 2016

Gọi số cần tìm là: abc 

     Các số có 2 chữ số được tạo thành là; ab; ba; ac; ca; bc; cb

Ta có: abc = ab + ba + ac + ca + bc + cb

            a x 100 + b x 10 + c = 22 x a + 22 x b + 22 x c

            78 x a = 12 x b + 21 x c

             26 x a = 4 x b + 7 x c

4 x b + 7 x c lớn nhất là 4 x 9 + 7 x 9 = 99 nên a chỉ có thể bằng 1;2; 

cần tìm số lớn nhất nên thử a = 3 => 4 x b + 7 x c = 52 là số chẵn

nên c phải chẵn => c = 4 và b = 6 thoả mãn

Đáp số: 264

10 tháng 5 2016

Sai

16 tháng 9 2018

Đáp án A

Mệnh đề P: “Ba số tự nhiên là ba số tự nhiên liên tiếp”.

Mệnh đề Q: “Ba số tự nhiên có tổng chia hết cho 3”.

Khi đó, Q=>P được phát biểu là:

“Nếu ba số tự nhiên có tổng chia hết cho 3 thì ba số tự nhiên đó là ba số tự nhiên liên tiếp”.

Nói gọn: “Ba số tự nhiên có tổng chia hết cho 3 thì liên tiếp”.