Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi 2 số đó là a và b(a và b thuộc N)
giả sử a chia hết cho 3 dư 1 thì thì a=3m+1
b chia hết cho 3 dư 2 thì thì b =3n+2(m và n thuộc N)
khi đó a+b=3m+1+3n+2=3m+3n+3 chia hết cho 3
=> là điều ta chứng minh
1)
gọi ba số tự nhiên liên tiếp là a;a+1;a+2
ta có :
a+(a+1)+(a+2)=3.a+3=3.(a+1) chia hết cho 3
=>dpcm
2) gọi 5 số tự nhiên liên tiếp đó là a;a+1;a+2a;a+3;a+4
ta có :a+(a+1)+(a+2)+(a+3)+(a+4)=5a+10=5a+2.5=5(a+2) chia hết cho 5
=>dpcm
Ta đã biết 1 số khi chia cho 3 chỉ có thể dư 0; 1 hoặc 2
Mà 2 số đề bài cho không chia hết cho 3 và chia 3 có số dư khác nhau
=> trong 2 số đó có 1 số chia 3 dư 1; 1 số chia 3 dư 2
Gọi 2 số đó là: 3.a + 1 và 3.b + 2
Ta có: (3.a + 1) + (3.b + 2)
= 3.a + 1 + 3.b + 2
= 3.a + 3.b + 3
= 3.(a + b + 1) chia hết cho 3
Chứng tỏ ...
Có đấy bạn.
Giả sử: 5+7=12 chia hết cho 3
7+11=18 chia hết cho 3
11+13=24 chia hết cho 3,....