Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ba số cần tìm là a,b,c
Theo đề, ta có: a/b=2/3
nên a/2=b/3
=>a/8=b/12(1)
Theo đề, ta có: b/c=4/9
nên b/4=c/9
=>b/12=c/27(2)
Từ (1) và (2) suy ra a/8=b/12=c/27
Đặt a/8=b/12=c/27=k
=>a=8k; b=12k; c=27k
Theo đề, ta có: \(a^3+b^3+c^3=-1009\)
\(\Leftrightarrow512k^3+1728k^3+19683k^3=-1009\)
Bạn xem lại đề nhé bạn, nghiệm rất xấu
gọi 3 số cần tìm là a,b,c
ta có \(\frac{a}{3}\)= \(\frac{b}{5}\) \(\frac{c}{4}\)=\(\frac{a}{7}\)
=>\(\frac{a}{21}\)=\(\frac{b}{35}\)=\(\frac{c}{28}\)
gọi \(\frac{a}{21}\)= \(\frac{b}{35}\)=\(\frac{c}{28}\)=k
ta có a=21k
b=35k
c=28k
BCNN(a,b,c) = 7.4.3.5k=420k
=> k=1260:420=3
=>a=3.21=66
b=3.35=105
c=3.28=84
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
Gọi ba số đó là a,b,c: a/3=b/5,c/4=a/7=>a/21=b/35=c/28.
Gọi a/21=b/35=c/28=k ta có a=21k,b=35k,c=28k
BCNN(a,b,c)=7x4x3x5k=420k
=>1260:420=3=>a=3x21=66
b=3x35=105
c=3x28=84
Tổng của 3 phân số tối giản là $1\frac{17}{20}$11720 . Tử số của phân số thứ nhất, thứ hai, thứ 3 tỉ lệ với 3; 7; 11 và mẫu của 3 phân số theo thứ tự tỉ lệ với 10; 20; 40. Tìm 3 phân số đó
Gọi số hs khổi 6,7,8 lần lượt là a,b,c (hs)(a,b,c∈N*)
Ta có \(a:b:c=41:30:29\Rightarrow\dfrac{a}{41}=\dfrac{b}{30}=\dfrac{c}{29}\) và \(a-b+c=320\left(hs\right)\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{41}=\dfrac{b}{30}=\dfrac{c}{29}=\dfrac{a-b+c}{41-30+29}=\dfrac{320}{40}=8\\ \Rightarrow\left\{{}\begin{matrix}a=328\\b=240\\c=232\end{matrix}\right.\)
Vậy số hs khối 6,7,8 lần lượt là 328 hs, 240 hs, 232 hs
Gọi số học sinh của 3 khối 6, 7, 8 lần lượt là x; y; z
Mà x; y; z lần lượt tỉ lệ vơi 41; 30; 29.
Theo đề bài, ta có: \(\dfrac{x}{41}=\dfrac{y}{30}=\dfrac{z}{29}\)và \(x+z-y=320\)(x; y; z ∈ N*; ≠ 0).
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{41}=\dfrac{y}{30}=\dfrac{z}{29}=\dfrac{x+z-y}{41+29-30}=\dfrac{320}{40}=8\)
=> x = 8.41 = 328 học sinh.
=> y = 8.30 = 240 học sinh.
=> z = 8.29 = 232 học sinh
Bài 1: Gọi chiều dài 3 tấm vải lúc đầu lần lượt là a,b,c.
Theo đề bài, ta có: a+b+c= 126 (m)
và \(a-\frac{1}{2}\cdot a=b-\frac{2}{3}\cdot b=c-\frac{3}{4}\cdot c\)
\(\Leftrightarrow\left(1-\frac{1}{2}\right)a=\left(1-\frac{2}{3}\right)b=\left(1-\frac{3}{4}\right)c\)
\(\Leftrightarrow\frac{1}{2}a=\frac{1}{3}b=\frac{1}{4}c\)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{126}{9}=14\)
Đến đây tự tìm a,b,c.
Bài 2:
Gọi số sách ở 3 tủ lần lượt là a,b,c:
Theo đề bài, ta có: a+b+c = 2250
và \(\frac{a-100}{16}=\frac{b}{15}=\frac{c+100}{14}\)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{a-100}{16}=\frac{b}{15}=\frac{c+100}{14}=\frac{a-100+b+c+100}{16+15+14}=\frac{2250}{45}=50\)
Tự tìm tiếp nha.
Bài 4: Gọi số hs khối 6,7,8,9 lần lượt là a.b.c.d .
Theo đề, ta có; b - d = 70
và \(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}\)
Đặt \(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}=k\)
\(\Rightarrow a=9k\)
\(b=8k\)
\(c=7k\)
\(d=6k\)
Thay b= 8k và d=6k vào b-d= 70:
8k - 6k = 70
2k = 70
k= 35
=> a=9k = 9* 35 = 315
(tìm b,c,d tương tự như tìm a. Sau đó kết luận)
Bài 5: Gọi số lãi của 2 tổ là a và b.
Theo đề , ta có: a+b = 12 800 000
và \(\frac{a}{b}=\frac{3}{5}\Rightarrow\frac{a}{3}=\frac{b}{5}\)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{a}{3}=\frac{b}{5}=\frac{a+b}{3+5}=\frac{12800000}{8}=1600000\)
(tự tìm a,b)
Bài 6:
Gọi độ dài 3 cạnh của tam giác đó là a,b,c:
Theo đề, ta có: a+b+c=22
và \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{22}{10}=2,2\)
=> (tự tìm a,b,c)
\(\frac{2}{3}a=\frac{3}{4}b\Rightarrow a=\frac{3}{4}b:\frac{2}{3}\Rightarrow a=\frac{9}{8}b\Rightarrow a^2=\left(\frac{9}{8}b\right)^2\Rightarrow a^2=\left(\frac{9}{8}\right)^2\cdot b^2\Rightarrow a^2=\frac{81}{64}b^2\)
Ta có:
\(a^2-b^2=68\Rightarrow\frac{81}{64}b^2-b^2=68\Rightarrow\frac{17}{64}b^2=68\Rightarrow b^2=68:\frac{17}{64}\Rightarrow b^2=16\Rightarrow b=4\)
\(\Rightarrow a=\frac{81}{64}b=\frac{81}{64}:4=\frac{81}{16}\)
=> Vậy : \(a=\frac{81}{16};b=4\)
gọi ba số đó lần lượt là x,y,z ta có
\(\hept{\begin{cases}x^3+y^3+z^3=-1009\\x:y=2:3\\x:z=4:9\end{cases}}\)thực hiện rút y và z ta có \(\hept{\begin{cases}y=\frac{3x}{2}\\z=\frac{9x}{4}\end{cases}}\)thế vào phunogw trình đầu tiên
\(x^3+\left(\frac{3x}{2}\right)^3+\left(\frac{9x}{4}\right)^3=-1009\Leftrightarrow x^3\left(1+\frac{27}{8}+\frac{729}{64}\right)=-1009\)
\(\Leftrightarrow\frac{x^3.1009}{64}=-1009\Leftrightarrow x^3=-64\Leftrightarrow x=-4\Rightarrow\hept{\begin{cases}y=-6\\z=-9\end{cases}}\)