K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 7 2024

Lời giải:
Gọi tổng trên là $A$

$A=(3+3^2)+(3^3+3^4)+....+(3^{99}+3^{100})$

$=3(1+3)+3^3(1+3)+....+3^{99}(1+3)$
$=(1+3)(3+3^3+...+3^{99})=4(3+3^3+...+3^{99})\vdots 4$

Vậy tổng trên chia 4 dư 0.

8 tháng 12 2017

sợ thế :)))))))))))) cc 

2 tháng 12 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

23 tháng 8 2021

a+5 chia hết cho 7

b+4 chia hết cho 7

=> a+5+b+4=a+b+9 chia hết cho 7

a+b+9=(a+b)+2+7 chia hết cho 7 => (a+b)+2 chia hết cho 7 => a+b chia 7 dư 5

30 tháng 1 2017

bạn đăng từng ý mọt mình giải cho !!

3 tháng 11 2023

b. Trong 100 số tn khác 0 đầu tiên tổng các số chẵn hơn tổng các số lẻ 50.

nếu a:8 dư 5 và b:8 dư 3 thì (a+b):8 dư 0 và (a-b):8 dư 2