K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2016

Ta thấy (x-3)2,(x-2)2+|x-1| luôn luôn dương,x dương hoặc âm 

  • Xét x lẻ

=>(x-3)2 luôn chẵn;  (x-2)2 luôn lẻ;  |x-1| luôn chẵn; x lẻ (theo giả thiết 1)

=>(chẵn +chẵn )+(lẻ +lẻ)

=chẵn + chẵn 

=chẵn chia hết 2.Mà 2013 ko chia hết 2

=>vô nghiệm (1)

  • Xét x chẵn 

=>(x-3)2 luôn lẻ; (x-2)2 luôn chẵn; |x-1| luôn lẻ; x chẵn (theo giả thiết 2)

=>(lẻ + lẻ )+(chẵn +chẵn)

=chẵn + chẵn 

= chẵn cũng chia hết 2.Mà  2013 ko chia hết 2

=>vô nghiệm (2)

Từ (1) và (2) =>pt trên vô nghiệm vs mọi x

6 tháng 6 2016

ko tồn tại nhé bn 

31 tháng 3 2019

Bài này chỉ vận dụng phân tích đa thức thành nhân tử thôi

Có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=6xyz\)

\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-xz\right)=6xyz\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=3xyz\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=3xyz\left(x+y+z\right)\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=3xyz\left(x+y+z\right)\)

\(\Leftrightarrow x^2+y^3+z^3=3xyz\left(x+y+z+1\right)\)

Do đó: \(x^3+y^3+z^3+1=3xyz\left(x+y+z+1\right)+1⋮x+y+z+1\)

Suy ra: \(1⋮x+y+z+1\)

 \(\Rightarrow x+y+z+1=1\)( do \(x,y,z\ge0\Rightarrow x+y+z+1\ge1\))

\(\Leftrightarrow x=y=z=0\)

Vậy \(x=y=z=0\)

cái đó là zĩ nhiên

vì từ đầu bài

nen x=y=z

22 tháng 8 2019

Trong 3 số x, y, z theo đề bài không có số lớn nhất => không có số nhỏ nhất => x=y=z