Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\)
\(\Leftrightarrow x-y-z=2\left(\sqrt{yz}-\sqrt{3}\right)\)
Do x;y;z;2 đều là các số hữu tỉ mà \(\sqrt{yz}-\sqrt{3}\) vô tỉ
Nên đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x-y-z=0\\yz=3\end{matrix}\right.\)
\(\Leftrightarrow\left(x;y;z\right)=\left(4;3;1\right);\left(4;1;3\right)\)
Đặt \(n^2+2021=k^2\left(k\in N\right)\)
\(\Rightarrow k^2-n^2=2021\\ \Rightarrow\left(k-n\right)\left(k+n\right)=2021\)
Mà \(k,n\in N\)
\(\Rightarrow\left(k-n\right)\left(k+n\right)=2021\cdot1=43\cdot47\)
\(\left\{{}\begin{matrix}k-n=2021\\k+n=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k=1011\\n=-1010\left(loại\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}k-n=1\\k+n=2021\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k=1011\\n=1010\end{matrix}\right.\left(nhận\right)\)
\(\left\{{}\begin{matrix}k-n=43\\k+n=47\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k=45\\n=2\end{matrix}\right.\left(nhận\right)\)
\(\left\{{}\begin{matrix}k-n=47\\k+n=43\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k=45\\n=-2\left(loại\right)\end{matrix}\right.\)
Vậy \(n\in\left\{2;1010\right\}\)
Giả sử n2+2021 là SCP
\(Đặtn^2+2021=k^2\left(k\in N\right)\\ \Rightarrow n^2-k^2=-2021\\ \Rightarrow\left(n-k\right)\left(n+k\right)=-2021\)
Vì \(n,k\in N\Rightarrow\left\{{}\begin{matrix}n-k< n+k\\n-k,n+k\in Z\\n-k,n+k\inƯ\left(-2021\right)\end{matrix}\right.\)
Ta có bảng:
n-k | -43 | -47 |
n+k | 47 | 43 |
n | 2 | -2 |
Mà n∈N⇒n=2
Vậy n=2
(2n + 1)(y - 3) = 10 = 1.10 = 10.1 = 2.5 = 5.2
2n + 1 = 1 => n = 0 ; y - 3 = 10 => y = 13
2n + 1 = 10 => n = 4,5 (loại)
2n + 1 = 2 => n = 0,5 (Loại)
2n + 1 = 5 => n =2 ; y - 3 = 2 => y = 5
Vậy các cặp (x;y) là (0;13) ; (2;5)
Đặt
-Nếu x=0
Nếu n=0 (vô lý)
Nếu n thì vế phải chia hết cho 5, vế trái không chia hết cho 5 loại
Tương tự, thử lần lượt x=1;2;3 để tìm nghiệm.
-Nếu x>3
+) Với y lẻ: Đặt y=2k+1 (kN). Ta có: (mod 8) không là số chính phương loại.
+) Với y chẵn: Đặt y=2k (kN)(mod 4)(loại, vì x>3)
Có: \(3026\equiv2\left(mod3\right)\)
Do đó: \(x^2\equiv2\left(mod3\right)\)
Mặt khác số chính phương chia 3 không dư 2
Vậy không có x,y thỏa .....
xét y=0 ta có x^2+1=3026
=>x=55
xét y>0 ta có như bạn lê nhật khôi