K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2019

Có: \(3026\equiv2\left(mod3\right)\)

Do đó: \(x^2\equiv2\left(mod3\right)\)

Mặt khác số chính phương chia 3 không dư 2

Vậy không có x,y thỏa .....

xét y=0 ta có x^2+1=3026

                  =>x=55

xét y>0 ta có như bạn lê nhật khôi

NV
17 tháng 12 2020

\(\Leftrightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\)

\(\Leftrightarrow x-y-z=2\left(\sqrt{yz}-\sqrt{3}\right)\)

Do  x;y;z;2 đều là các số hữu tỉ mà \(\sqrt{yz}-\sqrt{3}\)  vô tỉ

Nên đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x-y-z=0\\yz=3\end{matrix}\right.\)

\(\Leftrightarrow\left(x;y;z\right)=\left(4;3;1\right);\left(4;1;3\right)\)

25 tháng 3 2016

có 4050 cặp bạn à

25 tháng 3 2016

4025 ko phải 50

6 tháng 1 2022

Đặt \(n^2+2021=k^2\left(k\in N\right)\)

\(\Rightarrow k^2-n^2=2021\\ \Rightarrow\left(k-n\right)\left(k+n\right)=2021\)

Mà \(k,n\in N\)

\(\Rightarrow\left(k-n\right)\left(k+n\right)=2021\cdot1=43\cdot47\)

\(\left\{{}\begin{matrix}k-n=2021\\k+n=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k=1011\\n=-1010\left(loại\right)\end{matrix}\right.\)

\(\left\{{}\begin{matrix}k-n=1\\k+n=2021\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k=1011\\n=1010\end{matrix}\right.\left(nhận\right)\)

\(\left\{{}\begin{matrix}k-n=43\\k+n=47\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k=45\\n=2\end{matrix}\right.\left(nhận\right)\)

\(\left\{{}\begin{matrix}k-n=47\\k+n=43\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k=45\\n=-2\left(loại\right)\end{matrix}\right.\)

Vậy \(n\in\left\{2;1010\right\}\)

6 tháng 1 2022

Giả sử n2+2021 là SCP

 \(Đặtn^2+2021=k^2\left(k\in N\right)\\ \Rightarrow n^2-k^2=-2021\\ \Rightarrow\left(n-k\right)\left(n+k\right)=-2021\)

Vì \(n,k\in N\Rightarrow\left\{{}\begin{matrix}n-k< n+k\\n-k,n+k\in Z\\n-k,n+k\inƯ\left(-2021\right)\end{matrix}\right.\)

Ta có bảng:

n-k-43-47
n+k4743
n2-2

Mà n∈N⇒n=2

Vậy n=2

11 tháng 11 2015

(2n + 1)(y - 3) = 10 = 1.10 = 10.1 = 2.5 = 5.2

2n + 1 = 1 => n = 0 ; y - 3 = 10 => y = 13

2n + 1 = 10 => n = 4,5 (loại)

2n + 1 = 2 => n = 0,5 (Loại)

2n + 1 = 5 => n =2 ; y - 3 = 2 => y = 5

Vậy các cặp (x;y) là (0;13) ; (2;5) 

9 tháng 3 2022

Đặt a2=2x+5y

-Nếu x=0⇒1+5y=a2⇒5y=(a−1)(a+1)⇒{a+1=5ma−1=5n(m,n∈N,m+n=y,m>n)⇒2=5m−5n=5n(5m−n−1)

Nếu n=0→5m−1=2⇒5m=3 (vô lý)

Nếu n≠0 thì vế phải chia hết cho 5, vế trái không chia hết cho 5 loại

Tương tự, thử lần lượt x=1;2;3 để tìm nghiệm.

-Nếu x>3

  +) Với y lẻ: Đặt y=2k+1 (kN). Ta có: a2=2x+52k+1≡0+25k.5≡1k.5=5(mod 8)a2 không là số chính phương loại.

  +) Với y chẵn: Đặt y=2k (kN)⇒2x+52k=a2⇒2x=(a−5k)(a+5k)⇒{a+5k=2ba−5k=2c(b,c∈N,b+c=x,b>c)⇒2.5k=2b−2c=2c(2b−c−1)⇒2b=2⇒b=1⇒2c−1−1=5k⇒2c−1=5k+1≡1k+1=2(mod 4)⇒2c−1=2⇒c=2⇒x=2+1=3(loại, vì x>3)