K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2016

a) Áp dụng đinh lý Bê-du, ta có f(x) chia x + 1 dư \(f\left(-1\right)\); bạn tự thay x = - 1 và tính kết quả đó chính là số dư.

b) Dùng phương pháp gán giá trị riêng :

Đặt \(f\left(x\right)=\left(x^2-1\right).Q\left(x\right)+R\left(x\right)\)

Do đa thức chia có bậc không quá 2 nên đa thức dư có bậc không quá 1, nên đặt \(R\left(x\right)=ax+b\)

Thay vào và có :

\(x^{100}-x^{50}+2.x^{25}-4=\left(x^2-1\right)Q\left(x\right)+ax+b\)

Lần lượt gán cho x giá trị 1 và -1

\(f\left(1\right)=1-1+2.1-4=0.Q\left(x\right)+a.1+b\)

\(\Rightarrow a+b=-2\)

\(f\left(-1\right)=1-1+2.\left(-1\right)-4=0.Q\left(x\right)+a.\left(-1\right)+b\)

\(\Rightarrow b-a=-6\)

\(\Rightarrow b=\frac{\left(-2\right)+\left(-6\right)}{2}=-\frac{8}{2}=-4\)

\(a=\left(-4\right)-\left(-6\right)=2\)

Do đó dư là \(2x-4\)

Vậy ...

29 tháng 10 2021

Bài 1:

Ta có: \(5x^3-3x^2+2x+a⋮x+1\)

\(\Leftrightarrow5x^3+5x^2-8x^2-8x+10x+10+a-10⋮x+1\)

\(\Leftrightarrow a-10=0\)

hay a=10

9 tháng 9 2021

\(1,\\ a,A=4x^2\left(-3x^2+1\right)+6x^2\left(2x^2-1\right)+x^2\\ A=-12x^4+4x^2+12x^2-6x^2+x^2=-x^2=-\left(-1\right)^2=-1\\ b,B=x^2\left(-2y^3-2y^2+1\right)-2y^2\left(x^2y+x^2\right)\\ B=-2x^2y^3-2x^2y^2+x^2-2x^2y^3-2x^2y^2\\ B=-4x^2y^3-4x^2y^2+x^2\\ B=-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^3-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^2+\left(0,5\right)^2\\ B=\dfrac{1}{8}-\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{8}\)

9 tháng 9 2021

\(2,\\ a,\Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ b,\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3=8=-2^3\\ \Leftrightarrow x=2\\ c,\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^2=15\\ \Leftrightarrow16x^3-8x^2-x^3+8x^2=15\\ \Leftrightarrow15x^3=15\\ \Leftrightarrow x^3=1\Leftrightarrow x=1\)

 

9 tháng 10 2021

a)=\(3x^3-15x^2+21x\)

b)\(=-2x^4y-10x^2y+2xy\)

c)\(=-x^3+6x^2+5x-4x^2+24x+20=-x^3+2x^2+29x+20\)

d)\(=2x^4-3x^3+4x^2-2x^2+3x-4=2x^4-3x^32x^2+3x-4\)

e)\(=x^2-4y^2\)

f)\(=-2x^2y^3+y-3\)

g)\(=3xy^4-\dfrac{1}{2}y^2+2x^2y\)

h)\(=9x^2-6x+1-7x^2-14=2x^2-6x-13\)

i)\(=x^2-x-3\)

j)\(=\left(x+2y\right)\left(x^2-2y+4y^2\right):\left(x+2y\right)=x^2-2y+4y^2\)

24 tháng 10 2021

Tại sao ý b có dấu - trước ngoặc đâu mà đổi dấu mong bn giải đáp

24 tháng 6 2021

a)\(f\left(x\right)=2x^2-x-3+5=\left(x+1\right)\left(2x-3\right)+5\)

Để \(f\left(x\right)⋮g\left(x\right)\Leftrightarrow\left(x+1\right)\left(2x-3\right)+5⋮\left(x+1\right)\)

\(\Leftrightarrow5⋮\left(x+1\right)\)

mà \(x+1\in Z\Rightarrow x+1\in U\left(5\right)=\left\{-1;1;5;-5\right\}\)

\(\Leftrightarrow x\in\left\{-2;0;4;-6\right\}\)

Vậy...

b) \(f\left(x\right)=3x^2-4x+6=\left(3x^2-4x+1\right)+5=\left(3x-1\right)\left(x-1\right)+5\)

Để \(f\left(x\right)⋮g\left(x\right)\Leftrightarrow\left(3x-1\right)\left(x-1\right)+5⋮\left(3x-1\right)\)

\(\Leftrightarrow5⋮\left(3x-1\right)\) mà \(3x-1\in Z\Rightarrow3x-1\in U\left(5\right)=\left\{-1;1;5;-5\right\}\)

\(\Leftrightarrow x\in\left\{0;\dfrac{2}{3};2;-\dfrac{4}{3}\right\}\) mà x nguyên\(\Rightarrow x\in\left\{0;2\right\}\)

Vậy...

c)\(f\left(x\right)=\left(-2x^3-7x^2-5x+2\right)+3\)\(=\left(-2x^3-4x^2-3x^2-6x+x+2\right)+3\)\(=\left[-2x^2\left(x+2\right)-3x\left(x+2\right)+\left(x+2\right)\right]+3\)

\(=\left(x+2\right)\left(-2x^2-3x+1\right)+3\)

Làm tương tự như trên \(\Rightarrow x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Leftrightarrow x\in\left\{-5;-3;-1;1\right\}\)

Vậy...

d)\(f\left(x\right)=x^3-3x^2-4x+3=x\left(x^2-3x-4\right)+3=x\left(x+1\right)\left(x-4\right)+3\)

Làm tương tự như trên \(\Rightarrow x+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow x\in\left\{-4;-2;0;2\right\}\)

Vậy...

Bài 1: Thực hiện phép tính:a) x(3x2 – 2x + 5)                  b) 1/3 x2 y2 (6x + 2/3x2 – y)c) ( 1/3x + 2)(3x – 6)             d) ( 1/3x + 2)(3x – 6)e) (x2 – 3x + 1)(2x – 5)          f) ( 1/2x + 3)(2x2 – 4x + 6)Bài 2: Tìm x, biết:a) 3(2x – 3) + 2(2 – x) = –3                        b) x(5 – 2x) + 2x(x – 1) = 13c) 5x(x – 1) – (x + 2)(5x – 7) = 6                d) 3x(2x + 3) – (2x + 5)(3x – 2) = 8Bài 3: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị...
Đọc tiếp

Bài 1: Thực hiện phép tính:

a) x(3x2 – 2x + 5)                  b) 1/3 x2 y2 (6x + 2/3x2 – y)

c) ( 1/3x + 2)(3x – 6)             d) ( 1/3x + 2)(3x – 6)

e) (x2 – 3x + 1)(2x – 5)          f) ( 1/2x + 3)(2x2 – 4x + 6)

Bài 2: Tìm x, biết:

a) 3(2x – 3) + 2(2 – x) = –3                        b) x(5 – 2x) + 2x(x – 1) = 13

c) 5x(x – 1) – (x + 2)(5x – 7) = 6                d) 3x(2x + 3) – (2x + 5)(3x – 2) = 8

Bài 3: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến: a) A = x(2x + 1) – x2 (x + 2) + x3 – x + 3     

b) B = (2x + 11)(3x – 5) – (2x + 3)(3x + 7) + 5 

Bài 4: Tính giá trị của biểu thức

a) A = 2x( 1/2x2 + y) – x(x2 + y) + xy(x3 – 1) tại x = 10; y = – 1 10

b) B = 3x2 (x2 – 5) + x(–3x3 + 4x) + 6x2 tại x = –5

3
17 tháng 9 2021

\(1,\\ a,=3x^3-2x^2+5x\\ b,=2x^3y^2+\dfrac{2}{9}x^4y^2-\dfrac{1}{3}x^2y^3\\ c,=x^2-2x+6x-12=x^2+4x-12\\ 2,\\ a,\Rightarrow6x-9+4-2x=-3\\ \Rightarrow4x=2\Rightarrow x=\dfrac{1}{2}\\ b,\Rightarrow5x-2x^2+2x^2-2x=13\\ \Rightarrow3x=13\Rightarrow x=\dfrac{13}{3}\\ c,\Rightarrow5x^2-5x-5x^2+7x-10x+14=6\\ \Rightarrow-8x=-8\Rightarrow x=1\\ d,\Rightarrow6x^2+9x-6x^2+4x-15x+10=8\\ \Rightarrow-2x=-2\Rightarrow x=1\)

 

17 tháng 9 2021

\(3,\\ A=2x^2+x-x^3-2x^2+x^3-x+3=3\\ B=6x^2-10x+33x-55-6x^2-14x-9x-21=-76\)

30 tháng 10 2023

Thực hiện phép chia \(f(x)\) cho \(x-1\), ta được:

\(f(x)=(x-1)\cdot Q(x)+r\\\Rightarrow f(1)=(1-1)\cdot Q(1)+r\\\Rightarrow f(1)=r\\\Rightarrow 1^{100}+1^{99}+1^{98}+1^{97}+...+1+1=r\\\Rightarrow r=101(101.chữ.số.1)\)

Vậy số dư của phép chia $f(x)$ cho $(x-1)$ là 101.

23 tháng 8 2023

Để tìm dư của phép chia đa thức f(x) cho (x^2 + 1)(x - 2), chúng ta cần sử dụng định lý dư của đa thức. Theo định lý dư của đa thức, nếu chia đa thức f(x) cho đa thức g(x) và được dư đa thức r(x), thì ta có: f(x) = q(x) * g(x) + r(x) Trong trường hợp này, chúng ta biết rằng f(x) chia cho x - 2 dư 7 và chia cho x^2 + 1 dư 3x + 5. Vì vậy, chúng ta có các phương trình sau: f(x) = q(x) * (x - 2) + 7 f(x) = p(x) * (x^2 + 1) + (3x + 5) Để tìm dư của phép chia f(x) cho (x^2 + 1)(x - 2), ta cần tìm giá trị của r(x). Để làm điều này, chúng ta cần giải hệ phương trình trên. Đầu tiên, chúng ta sẽ giải phương trình f(x) = q(x) * (x - 2) + 7 để tìm giá trị của q(x). Sau đó, chúng ta sẽ thay giá trị của q(x) vào phương trình f(x) = p(x) * (x^2 + 1) + (3x + 5) để tìm giá trị của p(x) và r(x). Nhưng trước tiên, chúng ta cần biết đa thức f(x) là gì. Bạn có thể cung cấp thông tin về đa thức f(x) không?

22 tháng 12 2021

b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)

\(=2x^2-3x+1\)