
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: \(C=25\cdot\dfrac{-1}{125}+\dfrac{1}{5}-2\cdot\dfrac{1}{4}-\dfrac{1}{2}\)
\(=\dfrac{-1}{5}+\dfrac{1}{5}-\dfrac{1}{2}-\dfrac{1}{2}\)
=-1
b: \(E=5\cdot4-4\cdot3+5-0.3\cdot20\)
\(=20-12+5-6=7\)

b)\(\frac{1}{9}.\frac{2}{145}-4\frac{1}{3}.\frac{2}{145}+\frac{2}{145}\)
\(=\frac{2}{145}.\left(\frac{1}{9}-\frac{13}{3}+1\right)\)
\(=\frac{2}{145}.\left(-\frac{29}{9}\right)\)
\(=\frac{-2}{45}\)

\(A=\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}\)
\(A=\left(-1\right)^{2n+n+n+1}\)
\(A=\left(-1\right)^{4n+1}\)
\(B=\left(10000-1^2\right).\left(10000-2^2\right)...\left(10000-1000^2\right)\)
\(B=\left(10000-1^2\right)\left(10000-2^2\right)...\left(10000-100^2\right)...\left(10000-1000^2\right)\)
\(B=\left(10000-1^2\right)\left(10000-2^2\right)...\left(10000-10000\right)...\left(10000-1000^2\right)\)
\(B=\left(10000-1^2\right)\left(10000-2^2\right)...0\left(10000-1000^2\right)\)
\(B=0\)
\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{5^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...0....\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(C=0\)
\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-10^3\right)}\)
\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-1000\right)}\)
\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...0}\)
\(D=1999^0\)
\(D=1\)

22 + 42 + 62 + ... + 242
= 22 . ( 12 + 22 + 32 + ... + 122 )
= 22 . 650
= 2600
Ta có : 22 + 42 + 62 + ... + 242
= 12 . 22 + 22 . 22 + 32 . 22 + .... + 122 . 22
= (12 + 22 + 32 + ... + 122) . 22
= 650 . 4 = 2600

a) \(10^{n+1}-6.10^n\)
\(=10^n.10-6.19^n\)
\(=10^n.\left(10-6\right)\)
\(=10^n.4\)
b) \(2^{n+3}+2^{n+2}-2^{n+1}+2^n\)
\(=2^n.2^3+2^n.2^2-2^n.2+2^n.1\)
\(=2^n.\left(2^3+2^2-2+1\right)\)
\(=2^n.11\)
c) \(90.10^k-10^{k+2}+10^{k+1}\)
\(=90.10^k-10^k.10^2+10^k.10\)
\(=10^k.\left(90-10^2+10\right)\)
\(=0\)
d) \(2,5.5^{n-3}.10+5^n-6.5^{n-1}\)
\(=\dfrac{2,5.5^n.10}{5^3}+5^n-\dfrac{6.5^n}{5}\)
\(=\dfrac{5^n}{5}+5^n-\dfrac{6.5^n}{5}\)
\(=\dfrac{5^n+5^{n+1}-6.5^n}{5}=\dfrac{5^n+5^n.5-6.5^n}{5}=\dfrac{5^n\left(1+5-6\right)}{5}=\dfrac{0}{5}=0\)

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
\(A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{100.101}\)
\(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
\(A>\dfrac{1}{2}-\dfrac{1}{101}=\dfrac{99}{202}\)
\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A< \dfrac{99}{100}\)
Ta có: : \(\dfrac{99}{202}< A< \dfrac{99}{100}\)
Vậy \(A\) không phải số tự nhiên

1.
a.
\(\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{7}\right)\)
\(=\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\)
\(=\frac{35-21-15}{105}\)
\(=-\frac{1}{105}\)
b.
\(\frac{3}{5}-\left(\frac{3}{4}-\frac{1}{2}\right)\)
\(=\frac{3}{5}-\frac{3}{4}+\frac{1}{2}\)
\(=\frac{12-15+10}{20}\)
\(=\frac{7}{20}\)
c.
\(\frac{4}{7}-\left(\frac{2}{5}+\frac{1}{3}\right)\)
\(=\frac{4}{7}-\frac{2}{5}-\frac{1}{3}\)
\(=\frac{60-42-35}{105}\)
\(=-\frac{17}{105}\)
2.
a.
\(S=-\frac{1}{1\times2}-\frac{1}{2\times3}-\frac{1}{3\times4}-...-\frac{1}{\left(n-1\right)\times n}\)
\(S=-\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{\left(n-1\right)\times n}\right)\)
\(S=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(S=-\left(1-\frac{1}{n}\right)\)
\(S=-1+\frac{1}{n}\)
b.
\(S=-\frac{4}{1\times5}-\frac{4}{5\times9}-\frac{4}{9\times13}-...-\frac{4}{\left(n-4\right)\times n}\)
\(S=-\left(\frac{4}{1\times5}+\frac{4}{5\times9}+\frac{4}{9\times13}+...+\frac{4}{\left(n-4\right)\times n}\right)\)
\(S=-\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)
\(S=-\left(1-\frac{1}{n}\right)\)
\(S=-1+\frac{1}{n}\)
Chúc bạn học tốt

a) 1,(3) = 10+(3-1)/9 =12/9 = 4/3
...................
b) chẳng hiu dau bai
c) = 5 ; =7 ; = 10
1 + 2 + 3 + ....+ n
= (1+n).[(n-1) : 1 +1] :2
#
Số số hạng của tổng là:
( n - 1 ) : 1 + 1 = n
\(\Rightarrow\)Tổng của chúng là : ( n + 1 ) x n :2