K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

Mấy bài này đã có người làm rồi nhé bạn vào câu hỏi tương tự mà xem.

6 tháng 10 2017

a, Chắc xét hàm số tổng quát!

Xét hàm số tổng quát:

\(\dfrac{1}{\left(k+1\right)\sqrt{k}}=\dfrac{\sqrt{k}}{k\left(k+1\right)}=\sqrt{k}\left(\dfrac{1}{k\left(k+1\right)}\right)\)

\(=\sqrt{k}\left[\sqrt{\dfrac{1}{k}}^2-\sqrt{\dfrac{1}{k+1}}^2\right]\)

\(=\sqrt{k}\left(\dfrac{1}{\sqrt{k}}+\dfrac{1}{\sqrt{k+1}}\right)\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)\)

\(=\left(1+\dfrac{\sqrt{k}}{\sqrt{k+1}}\right)\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)\)

\(\dfrac{\sqrt{k}}{\sqrt{k+1}}< 1\Rightarrow1+\dfrac{\sqrt{k}}{\sqrt{k+1}}< 2\)

Do đó \(\left(1+\dfrac{\sqrt{k}}{\sqrt{k+1}}\right)\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)< 2.\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)\)

\(\Rightarrow\dfrac{1}{\left(k+1\right)\sqrt{k}}< 2\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)\) (1)

Áp dụng điểu (1) ta được:

\(\dfrac{1}{2}< 2\left(\dfrac{1}{1}-\dfrac{1}{\sqrt{2}}\right)\)

\(\dfrac{1}{3\sqrt{2}}< 2\left(\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}\right)\)

...................................

\(\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+....+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\dfrac{1}{1}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+....+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\left(1-\dfrac{1}{\sqrt{n+1}}\right)\)

Với mọi giá trị của \(n>0\) ta luôn có: \(\sqrt{n+1}>0\)

Do đó \(\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\) (đpcm)

6 tháng 10 2017

Đang nghi ngờ you với nhailaier là crush -_-

19 tháng 6 2015

a, bạn chỉ cần lập công thức tông quát :

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Cái này bạn chỉ cần trục căn thức ở mẫu chưng minh xong áp dụng vào luôn là ra

a, kq : 4/5

b,\(1-\frac{1}{\sqrt{n+1}}\)

c,d chưa nghĩ ra

18 tháng 6 2015

  ta có:  \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{\left(n+1\right)n}\left(\sqrt{n+1}+\sqrt{n}\right)}\)\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{\left(n+1\right)n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

nên: \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{25\sqrt{24}+24\sqrt{25}}=\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+......+\frac{1}{\sqrt{24}}-\frac{1}{\sqrt{25}}\)\(=1-\frac{1}{5}=\frac{4}{5}\)

NV
16 tháng 4 2020

Nguyễn Hồng Nhung

Thay vào công thức:

\(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}=1+\frac{1}{1.2}\) ; \(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}=1+\frac{1}{2.3}\) ...

Cộng lại:

\(1+\frac{1}{1.2}+1+\frac{1}{2.3}+...+1+\frac{1}{n\left(n+1\right)}\)

Có n số 1 cộng với nhau ra n

CÒn lại đống \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}\) thôi

16 tháng 4 2020

bạn giải thích cho mình chỗ dấu suy ra thứ 2 được không ạ, vì sao lại xuất hiện n+1/1.2 +......... vậy ạ?