Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow x\cdot\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{9}=\dfrac{11}{18}\)
hay \(x=\dfrac{11}{18}:\dfrac{1}{4}=\dfrac{11}{18}\cdot4=\dfrac{44}{18}=\dfrac{22}{9}\)
d: =>x+1;x-2 khác dấu
Trường hợp 1: \(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Leftrightarrow-1< x< 2\)
Trường hợp 2: \(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Leftrightarrow2< x< -1\left(loại\right)\)
e: =>x-2>0 hoặc x+2/3<0
=>x>2 hoặc x<-2/3
Bài 1:
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
= \(\left(\frac{1}{5}-3\right)x^4y^3\)
= \(-\frac{14}{5}x^4y^3.\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
= \(\left(5-\frac{1}{4}\right)x^2y^5\)
= \(\frac{19}{4}x^2y^5.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!
\(A=x^3-y^3-21xy\)
\(A=\left(x-y\right).\left(x^2+xy+y^2\right)-21xy\)
\(A=7.\left(x^2+xy+y^2\right)-21xy\)
\(A=7.\left(x^2+xy+y^2+3xy\right)\)
\(A=7.\left(x^2+2xy+y^2+2xy\right)\)
\(A=7.\text{[}\left(x+y\right)^2+2xy\text{]}\)
\(A=7.\left(7^2+2xy\right)\)
\(A=7^3+14xy\)
Ngáo rồi @@
\(\)
\(A=x^3-y^3-21xy\)
\(\Rightarrow A=\left(x-y\right)\left(x^2+xy+y^2\right)-21xy\)
\(\Rightarrow A=7\left(x^2+xy+y^2\right)-21xy\)
\(\Rightarrow A=7\left(x^2+xy+y^2-3xy\right)\)
\(\Rightarrow A=7\left(x^2+y^2-2xy\right)\)
\(\Rightarrow A=7\left(x-y\right)^2\)
\(\Rightarrow A=7.7^2\)
\(\Rightarrow A=7.49\)
\(\Rightarrow A=343\)
\(x^2-y^2\)
\(=x^2-xy+xy-y^2=x.\left(x-y\right)+y.\left(x-y\right)=\left(x+y\right).\left(x-y\right)\)
\(\left(x+y\right).\left(x^2-xy+y^2\right)\)
\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3=x^3+y^3\)
1) a) \(\left|7x-5y\right|+\left|2z-3y\right|+\left|xy+yz+xz-2000\right|\ge0\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}7x=5y\\2z=3y\\xy+yz+xz=2000\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}y\\z=\dfrac{3}{2}y\\xy+yz+xz=2000\end{matrix}\right.\)
Ta có: \(xy+yz+xz=2000\)
\(\Rightarrow\dfrac{5}{7}y^2+\dfrac{3}{2}y^2+\dfrac{15}{14}y^2=2000\)
\(\Rightarrow y^2\left(\dfrac{5}{7}+\dfrac{3}{2}+\dfrac{15}{14}\right)=2000\Leftrightarrow\dfrac{23}{7}y^2=2000\)
Tìm \(y\) và suy ra \(x;z\) là được,Bài này nghiệm khá xấu
b) \(\left|3x-7\right|+\left|3x+2\right|+8=\left|7-3x\right|+\left|3x+2\right|+8\ge\left|7-3x+3x+2\right|+8\ge9+8=17\)Dấu "=" xảy ra khi: \(-\dfrac{3}{2}\le x\le\dfrac{7}{3}\)
2) a)Ta có: \(\left\{{}\begin{matrix}\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=4\\\dfrac{12}{\left|y+1\right|+3}\le\dfrac{12}{3}=4\end{matrix}\right.\)
Mà theo đề bài: \(\left|x-5\right|+\left|1-x\right|=\dfrac{12}{\left|y+1\right|+3}\)
\(\Rightarrow\left|x-5\right|+\left|1-x\right|=\dfrac{12}{\left|y+1\right|+3}=4\)
\(\Rightarrow\left\{{}\begin{matrix}1\le x\le5\\y=-1\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}\left|y+3\right|+5\ge5\\\dfrac{10}{\left(2x-6\right)^2+2}\le\dfrac{10}{2}=5\end{matrix}\right.\)
Mà theo đề bài: \(\left|y+3\right|+5=\dfrac{10}{\left(2x-6\right)^2+2}\)
\(\Rightarrow\left|y+3\right|+5=\dfrac{10}{\left(2x-6\right)^2+2}=5\)
\(\Rightarrow\left\{{}\begin{matrix}y=-3\\x=3\end{matrix}\right.\)
c) Ta có: \(\left\{{}\begin{matrix}\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\\\dfrac{6}{\left|y+3\right|+3}\le\dfrac{6}{3}=2\end{matrix}\right.\)
Mà theo đề bài: \(\left|x-1\right|+\left|3-x\right|=\dfrac{6}{\left|y+3\right|+3}\)
\(\Rightarrow\left|x-1\right|+\left|3-x\right|=\dfrac{6}{\left|y+3\right|+3}=2\)
\(\Rightarrow\left\{{}\begin{matrix}1\le x\le3\\y=-3\end{matrix}\right.\)