Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\hept{\begin{cases}\sqrt{3-\sqrt{5}}=A\\\sqrt{3+\sqrt{5}}=B\end{cases}}\)
Ta có A.B = 2
(A + B)2 = 6 + 4 = 10 => A + B = \(\sqrt{10}\)
Ta có cái ban đầu
= A2 B + AB2 = AB(A + B) = \(2\sqrt{10}\)
con cacacacacacacacacacacacacacacacacacca
@@22@22@22@@222@@2@@2@@@2@2
a) \(\sqrt{3+\sqrt{5}}\left(\sqrt{10}+\sqrt{2}\right)\left(3-\sqrt{5}\right)\)
\(=\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{3-\sqrt{5}}.\left(\sqrt{10}+\sqrt{2}\right)\)
\(=\left(9-5\right).\sqrt{3-\sqrt{5}}.\sqrt{2}\left(\sqrt{5}+1\right)\)
\(=4.\sqrt{6-2\sqrt{5}}.\left(\sqrt{5}+1\right)\)
\(=4.\sqrt{5-2\sqrt{5}+1}.\left(\sqrt{5}+1\right)\)
\(=4.\sqrt{\left(\sqrt{5}-1\right)^2}.\left(\sqrt{5}+1\right)\)
\(=4.\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)=4.\left(5-1\right)=16\)
b) \(2\sqrt{4+\sqrt{6-2\sqrt{5}}}.\left(\sqrt{10}-\sqrt{2}\right)\)
\(=2\sqrt{4+\sqrt{5-2\sqrt{5}+1}}.\left(\sqrt{10}-\sqrt{2}\right)\)
\(=2\sqrt{4+\sqrt{\left(\sqrt{5}-1\right)^2}}.\left(\sqrt{10}-\sqrt{2}\right)\)
\(=2\sqrt{3+\sqrt{5}}.\sqrt{2}.\left(\sqrt{5}-\sqrt{1}\right)\)
\(=2\sqrt{6+2\sqrt{5}}.\left(\sqrt{5}-1\right)\)
\(=2\sqrt{5+2\sqrt{5}+1}.\left(\sqrt{5}-1\right)\)
\(=2\sqrt{\left(\sqrt{5}+1\right)^2}.\left(\sqrt{5}-1\right)=2.\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)\)
\(=2.\left(5-1\right)=2.4=8\)
a: \(D=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
b: \(E=\sqrt{6-2\sqrt{5}}\cdot\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)
\(=\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)\)
\(=18+6\sqrt{5}-6\sqrt{5}-10=8\)
\(1,\sqrt{\left(2+\sqrt{7}\right)^2-\sqrt{\left(2-\sqrt{7}\right)^2}}\) ( áp dụng hđt thứ 3 \(a^2-b^2=\left(a-b\right)\left(a+b\right)\))
\(=\sqrt{\left(2+\sqrt{7}+2-\sqrt{7}\right)\left(2+\sqrt{7}-2+\sqrt{7}\right)}\)
\(=\sqrt{4\cdot\sqrt{7}}\)
\(2,\sqrt{\left(3\sqrt{5}-5\sqrt{2}\right)^2}-\sqrt{\left(5\sqrt{2}+3\sqrt{5}\right)^2}\)
\(\Leftrightarrow\sqrt{\left(3\sqrt{5}-5\sqrt{2}\right)^2}=\sqrt{\left(5\sqrt{2}+3\sqrt{5}\right)^2}\)
\(\Leftrightarrow\left(3\sqrt{5}-5\sqrt{2}\right)^2=\left(5\sqrt{2}+3\sqrt{5}\right)^2\)
\(\Leftrightarrow\left(3\sqrt{5}-5\sqrt{2}\right)^2-\left(5\sqrt{2}+3\sqrt{5}\right)^2\)
\(=\left(3\sqrt{5}-5\sqrt{2}+5\sqrt{2}+3\sqrt{5}\right)\left(3\sqrt{5}-5\sqrt{2}-5\sqrt{2}-3\sqrt{5}\right)\)
\(=6\sqrt{5}\cdot\left(-10\sqrt{2}\right)\)
\(3,\sqrt{10+2\sqrt{21}}-\sqrt{10-2\sqrt{21}}\)
\(\Leftrightarrow\sqrt{10+2\sqrt{21}}=\sqrt{10-2\sqrt{21}}\)
\(\Leftrightarrow10+2\sqrt{21}=10-2\sqrt{21}\)
\(\Leftrightarrow4\sqrt{21}\)
cuối lười tính nên thôi nhá :>
\(=\sqrt{\left(3-\sqrt{5}\right)^2\left(3+\sqrt{5}\right)}+\sqrt{\left(3+\sqrt{5}\right)^2\left(3-\sqrt{5}\right)}\)ư
\(=\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}+\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)
\(=\sqrt{\left(9-5\right)\left(3-\sqrt{5}\right)}+\sqrt{\left(9-5\right)\left(3+\sqrt{5}\right)}\)
\(=\sqrt{4\left(3-\sqrt{5}\right)}+\sqrt{4\left(3+\sqrt{5}\right)}=2\sqrt{3-\sqrt{5}}+2\sqrt{3+\sqrt{5}}\)
\(=2\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)\)
\(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2=3-\sqrt{5}+2\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}+3+\sqrt{5}\)
\(=6+2\sqrt{9-5}=6+2\sqrt{4}=6+2\cdot2=6+4=10\)
\(\Rightarrow\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=\sqrt{10}\Rightarrow2\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)=2\sqrt{10}\)
\(\Rightarrow\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}=2\sqrt{10}\)