Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a. Vì \(\left|x-y-5\right|\ge0\forall x;y;2019\left|y-3\right|^{2020}\ge0\forall y\)
\(\Rightarrow\left|x-y-5\right|+2019\left|y-3\right|^{2020}\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left|x-y-5\right|=0\\2019\left|y-3\right|^{2020}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-y-5=0\\y-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-y=5\\y=3\end{cases}}\)
b. \(2\left(x-5\right)^4\ge0\forall x;5\left|2y-7\right|^5\ge0\forall y\)
\(\Rightarrow2\left(x-5\right)^4+5\left|2y-7\right|^5\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}2\left(x-5\right)^4=0\\5\left|2y-7\right|^5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-5=0\\2y-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\y=\frac{7}{2}\end{cases}}\)

a) Ta có A = \(\frac{2^{2018}+1}{2^{2019}+1}\)
=> 2A = \(\frac{2^{2019}+2}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)
Lại có B = \(\frac{2^{2017}+1}{2^{2018}+1}\)
=> 2B = \(\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)
Vì \(\frac{1}{2^{2018}+1}>\frac{1}{2^{2019}+1}\Rightarrow1+\frac{1}{2^{2018}+1}>1+\frac{1}{2^{2019}+1}\Rightarrow2B>2A\Rightarrow B>A\)

B=(1-\(\frac{1}{2}\))x(1-\(\frac{1}{3}\))x(1-\(\frac{1}{4}\))x...x(1-\(\frac{1}{20}\))
B=\(\frac{1}{2}\)X\(\frac{2}{3}\)X\(\frac{3}{4}\)X...X\(\frac{19}{20}\)
B=\(\frac{1.2.3.4.4.5.7.8.9.10.11.12.13.14.15.16.17.18.19}{2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20}\)
B=20
Vậy B=20
Không biết kết quả đúng ko nhưng cách làm thì đúng.
B= \(\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x...x\left(1-\frac{1}{20}\right)\)
=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{19}{20}\)(Rút gọn cả tử xuống mẫu )
= \(\frac{1.2.3...19}{2.3.4...20}\)
=\(\frac{1}{20}\)
Vậy B= \(\frac{1}{20}\)

\(M=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right).2.3.4...2018\)
\(\Rightarrow M=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right).2.3.4...673.674...2018\)
Vì \(\hept{\begin{cases}M⋮3\\M⋮673\end{cases}}\) mà \(\left(3,673\right)=1\) nên \(M⋮2019\left(đpcm\right)\)
\(M=\left[\left(1+\frac{1}{2018}\right)+\left(\frac{1}{2}+\frac{1}{2017}\right)+...+\left(\frac{1}{1008}+\frac{1}{1011}\right)+\left(\frac{1}{1009}+\frac{1}{1010}\right)\right].\)\(2.3...1008.1009.1010.1011...2017.2018\)
\(=\left(\frac{2019}{2018}+\frac{2019}{2.2017}+...+\frac{2019}{1008.1011}+\frac{2019}{1009.1010}\right).2.3...1008.1009.1010.1011...2017.2018\)
\(=2019\left(\frac{1}{2018}+\frac{1}{2.2017}+...+\frac{1}{1008.1011}+\frac{1}{1009.1010}\right).2...1008.1009.1010.1011...2017.2018\)
\(=2019.\left(2...2017+3...2016.2018+...+2.3...1007.1009.1011...2018+2.3....1008.1011...2018\right)\)
Chia hết cho 2019
\(\frac{1}{2}X\frac{2}{3}X.....X\frac{2019}{2020}\)
= \(\frac{1X2X...2019}{2X3X...X2020}\)
= \(\frac{1}{2020}\)
\(\frac{1}{2}\)x\(\frac{2}{3}\)x...x\(\frac{2019}{2020}\)
mẫu số ở trên bằng tử số ở dưới nên rút gọn hết
= \(\frac{1}{2020}\)
/HT\