Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính tử số:
\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{19.20}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{19}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{20}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{20}\right)\)
\(=1+\frac{1}{2}+...+\frac{1}{20}-\left(1+\frac{1}{2}+...+\frac{1}{10}\right)\)
\(=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\)
\(\Rightarrow A=\frac{\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}}{\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}}=1\)
Ta có: 1/1.2 = 1- 1/2
1/3.4 = 1/3 - 1/4
...............
1/19.20 = 1/19 - 1/20
Cộng vế với vế ta đc:
A = 1- 1/20 = 19/20
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{17.18}+\frac{1}{19.20}\)
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{17}-\frac{1}{18}+\frac{1}{19}-\frac{1}{20}\)
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{17}+\frac{1}{19}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+..+\frac{1}{18}+\frac{1}{20}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{18}+\frac{1}{20}\right)\)
\(A=\left(1+\frac{1}{2}+...+\frac{1}{20}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{9}+\frac{1}{10}\right)\)
\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}\)
\(\frac{A}{B}=1\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)
\(A=1-\frac{1}{20}\)
\(A=\frac{19}{20}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\)
\(=1-\frac{1}{20}\)
\(=\frac{19}{20}\)
a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
\(\Rightarrow A< 1\)
b) \(B=\frac{1}{3}+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{3}\right)^{100}\)
\(\Rightarrow3B=1+\frac{1}{3}+...+\left(\frac{1}{3}\right)^{99}\)
\(\Rightarrow3B-B=1-\left(\frac{1}{3}\right)^{100}\)
\(\Rightarrow2B=1-\left(\frac{1}{3}\right)^{100}< 1\)
\(\Rightarrow2B< 1\)
\(\Rightarrow B< \frac{1}{2}\)
\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(B=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(B< \frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)
\(B< \frac{50}{60}\Leftrightarrow B< \frac{5}{6}\)
Tổng cộng sẽ mất: 10 phút (D) + 1 phút (A quay lại) + 7 phút (A+C) + 1 phút (A quay lại) + 2 (A+B) = 21 phút
Để giảm thời gian, chúng ta nên tìm cách cho D và C đi với nhau. Nếu họ đi qua cầu đầu tiên, họ sẽ cần một người quay lại đón người khác.
Như thế thì quá mất thời gian. Thử để A đi cùng B và để A đợi ở phía kia cây cầu. Sau khi B quay lại, C và D sẽ qua cầu và đưa đuốc cho A đón B sang.
A và B qua cầu => 2 phút
B quay lại => 2 phút
C và D qua cầu => 10 phút
A quay lại => 1 phút
A và B qua cầu => 2 phút
Tổng là: 2 + 2 + 10 + 1 + 2 = 17 phút
\(-\frac{1}{1.2}+-\frac{1}{2.3}+-\frac{1}{3.4}+-\frac{1}{4.5}\)
\(=-1\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\right)\)
\(=-1.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\right)\)
\(=-1\left(1-\frac{1}{5}\right)\)
\(=-1.\frac{4}{5}=-\frac{4}{5}\)
\(\frac{-1}{1.2}+\frac{-1}{2.3}+\frac{-1}{3.4}+\frac{-1}{4.5}\)
\(=-1\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\right)\)
\(=-1\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\right)\)
\(=-1\left(1-\frac{1}{5}\right)\)
\(=-1.\frac{4}{5}=-\frac{4}{5}\)