\(Tính\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+................+\frac{1}{1+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2018

\(c)\)

\(2x-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-...-\frac{1}{49.50}=\left(7-\frac{1}{50}+x\right)\)

\(\Rightarrow2x-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{49.50}\right)=\left(\frac{350}{50}-\frac{1}{50}+x\right)\)

\(\Rightarrow2x-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\right)=\frac{349}{50}+x\)

\(\Rightarrow2x-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)-x=\frac{349}{50}\)

\(\Rightarrow x-\left(1-\frac{1}{50}\right)=\frac{349}{50}\)

\(\Rightarrow x-\frac{49}{50}=\frac{349}{50}\)

\(\Rightarrow x=\frac{349}{50}+\frac{49}{50}\)

\(\Rightarrow x=\frac{199}{25}\)

Vậy \(x=\frac{199}{25}\)

~ Ủng hộ nhé 

30 tháng 5 2018

\(a)2.x-3=x+\frac{1}{2}\)

\(\Rightarrow2x-3-x=\frac{1}{2}\)

\(\Rightarrow x-3=\frac{1}{2}\)

\(\Rightarrow x=\frac{1}{2}+3\)

\(\Rightarrow x=\frac{1}{2}+\frac{6}{2}\)

\(\Rightarrow x=\frac{7}{2}\)

Vậy \(x=\frac{7}{2}\)

\(b)4.x-\left(2.x+1\right)=3-\frac{1}{3}+x\)

\(\Rightarrow4.x-2.x-1=\frac{9}{3}-\frac{1}{3}+x\)

\(\Rightarrow2.x-1=\frac{8}{3}+x\)

\(\Rightarrow2x-1-x=\frac{8}{3}\)

\(\Rightarrow x-1=\frac{8}{3}\)

\(\Rightarrow x=\frac{8}{3}+1\)

\(\Rightarrow x=\frac{8}{3}+\frac{3}{3}\)

\(\Rightarrow x=\frac{11}{3}\)

Vậy \(x=\frac{11}{3}\)

~ Ủng hộ nhé 

25 tháng 8 2020

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n\left(n+1\right)}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{n\left(n+1\right)}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{49}{50}\)

\(\Rightarrow1-\frac{1}{n+1}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{n+1}=\frac{1}{50}\)

\(\Rightarrow n+1=50\)

\(\Rightarrow n=49\)

\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)

\(\Rightarrow\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n-1}-\frac{1}{2n+1}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{2n+1}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{2n+1}=\frac{1}{51}\)

\(\Rightarrow2n+1=51\)

\(\Rightarrow2n=50\)

\(\Rightarrow n=25\)

Bài 1 : Thực hiện phép tính(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)Bài 2 : Tìm x biết(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot...
Đọc tiếp

Bài 1 : Thực hiện phép tính

(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)

(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

Bài 2 : Tìm x biết

(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)

(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot x=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)

(3) \(\frac{x}{\left(a+5\right)\left(4-a\right)}=\frac{1}{a+5}+\frac{1}{4-a}\)

(4) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)

(5) \(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}+4=0\)

Bài 3 : 

(1) Cho : A =\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}\); B =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\)

CMR : \(\frac{A}{B}\)Là 1 số nguyên

(2) Cho : D =\(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}\)CMR : \(D< \frac{3}{4}\)

Bài 4 : Ký hiệu [x] là số nguyên lớn nhất không vượt quá x , gọi là phần nguyên của x.

VD : [1.5] =1 ; [3] =3 ; [-3.5] = -4

(1) Tính :\(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)

(2) So sánh : A =\(\left[X\right]+\left[X+\frac{1}{5}\right]+\left[X+\frac{2}{5}\right]+\left[X+\frac{3}{5}\right]+\left[X+\frac{4}{5}\right]\)và B = [5x]. Biết x=3.7

0
10 tháng 10 2020

1) Đặt \(D=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\)

\(\Rightarrow3D=1+\frac{1}{3}+...+\frac{1}{3^{99}}\)

\(\Rightarrow3D-D=\left(1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)

\(\Leftrightarrow2D=1-\frac{1}{3^{100}}\)

\(\Leftrightarrow D=\frac{3^{100}-1}{2\cdot3^{100}}\)

Vậy \(D=\frac{3^{100}-1}{2\cdot3^{100}}\)

2) Ta có: \(\frac{49}{58}\cdot\frac{2^5}{4^2}-\frac{7^2}{-58}\cdot3\)

\(=\frac{49}{58}\cdot2-\frac{49}{58}\cdot3\)

\(=-1\cdot\frac{49}{58}\)

\(=-\frac{49}{58}\)

8 tháng 1 2016

\(=\frac{1}{\frac{2.\left(1+2\right)}{2}}+\frac{1}{\frac{3.\left(3+1\right)}{2}}=\frac{1}{\frac{4.\left(4+1\right)}{2}}+...+\frac{1}{\frac{99.\left(99+1\right)}{2}}+\frac{1}{50}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{99.100}+\frac{1}{50}\)

\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)+\frac{1}{50}\)

\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)+\frac{1}{50}\)

\(=2.\frac{49}{100}+\frac{1}{50}\)

\(=\frac{49}{50}+\frac{1}{50}\)

\(=1\)

8 tháng 1 2016

=1  (violympic vong 10 dung to da lam roi)

5 tháng 3 2020

\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)\)

\(+...+\frac{1}{20}\left(1+2+3+...+20\right)\)

\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}\)\(+...+\frac{1}{20}.\frac{20.21}{2}\)

\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{21}{2}\)

\(=\frac{\frac{\left(21+2\right)\left[\left(21-2\right)+1\right]}{2}}{2}=115\)

10 tháng 7 2019

a)\(\frac{1}{2}x+2\frac{1}{2}=3\frac{1}{2}x-\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{2}x+\frac{5}{2}=\frac{7}{2}x-\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{2}x-\frac{7}{2}x=-\frac{3}{4}-\frac{5}{2}\)

\(\Leftrightarrow-3x=-\frac{13}{4}\)

\(\Leftrightarrow x=-\frac{13}{4}:\left(-3\right)\)

\(\Leftrightarrow x=\frac{13}{12}\)

10 tháng 7 2019

\(b,\frac{2}{3}x-\frac{2}{5}=\frac{1}{2}x-\frac{1}{3}\)

\(\Leftrightarrow\frac{2}{3}x-\frac{2}{5}-\frac{1}{2}x=-\frac{1}{3}\)

\(\Leftrightarrow\frac{2}{3}x-\frac{1}{2}x-\frac{2}{5}=-\frac{1}{3}\)

\(\Leftrightarrow\frac{1}{6}x=\frac{1}{15}\Leftrightarrow x=\frac{2}{5}\)

\(c,\frac{1}{3}x+\frac{2}{5}x+\frac{2}{5}=0\)

\(\Leftrightarrow\frac{11}{15}x=-\frac{2}{5}\Leftrightarrow x=-\frac{6}{11}\)

30 tháng 10 2020

VIẾT SAI ĐỀ BÀI NHÉ

50<A<100