Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
S=3/5.7+3/7.9+...+3/59.61
S=3/2.(2/5.7+2/5.7+...+2/59.61)
S=3/2.(1/5-1/7+1/7-1/9+...+1/59-1/61)
S=3/2.(1/5-1/61)
S=3/2.56/305
S=84/305
Chúc bạn học tốt!
Đặt : A = \(\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{59.61}\)
A = \(2.\)\(\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)
A = 2 . ( \(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\))
A = 2 . \(\left(\frac{1}{5}-\frac{1}{61}\right)\)
A = 2 . \(\frac{56}{305}\)= \(\frac{112}{305}\)
= 3(1/5.7+1/7.9+...+1/59.61)
= 3/2(2/5.7+2/7.9+...+2/59.61)
= 3/2(1-1/5+1/5-1/7+1/7-1/9+...+1/59-1/61)
= 3/2(1-1/61)=3/2.60/61=90/61
Chẳng biết mk làm đúng ko nữa!
E = \(\frac{11}{5.7}+\frac{11}{7.9}+...+\frac{11}{59.61}=11.\frac{1}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)
E = \(\frac{11}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)\)
E = \(\frac{11}{2}.\left(\frac{1}{5}-\frac{1}{61}\right)=\frac{11}{2}.\frac{56}{305}\)
E = \(\frac{308}{305}\)
E = 11/2 ( 2/5.7 + ... +2/59.61)
= 11/2 ( 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/59 - 1/61)
= 11/2 ( 1/5 - 1/61)
= 11/2 .56/305
=308/305
Ta có :
4/5 . 7 + 4/7 . 9 + ...+ 4/59 . 61
= 2 . ( 2/5 . 7 + 2/7 . 9 + ...+ 2/59 . 61 )
= 2 . ( 1/5 - 1/7 + 1/7 - 1/9 + ...+ 1/59 - 1/61 )
= 2 . ( 1/5 - 1/61 )
= 2 . 56/305
= 112/305
Tham khảo nha !!!
4/5.7+4/7.9+...+4/59.61
=2.(2/5.7+2/7.9+...+2/59.61)
=2.(1/5-1/7+1/7-1/9+...+1/59-1/61)
=2.(1/5-1/61)
=2.56/305
=112/203
A=( 2/5.7+2/7.9+.........+2/59.61).2
A = (1/5-1/7+1/7-1/9+.......+1/59-1/61).2
A= ( 1/5-1/61)2