K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2016

Sao trong biểu thức B lại có dấu " </"?

Xem lại đề

bài này dễ quá nên mik không làm

13 tháng 2 2016

Dễ thì làm đi

Ta có :\(A=\left(5+10+15+...+1000\right).\left\{\frac{2}{5}:0,5+2:\left(-0,4\right)\right\}:\left(\frac{1}{5}+\frac{1}{10}+...+\frac{1}{1000}\right)\)

\(\Leftrightarrow A=\left(5+10+15+...+1000\right).\left\{\frac{2}{5}:\frac{1}{2}+2:\left(-\frac{2}{5}\right)\right\}:\left(\frac{1}{5}+\frac{1}{10}+...+\frac{1}{1000}\right)\)\(\Leftrightarrow A=\left(5+10+15+...+1000\right).\left\{\frac{2}{5}.2+2.\left(-\frac{5}{2}\right)\right\}:\left(\frac{1}{5}+\frac{1}{10}+...+\frac{1}{1000}\right)\)\(\Leftrightarrow A=\left(5+10+...+1000\right).\left\{2.\left(\frac{2}{5}-\frac{5}{2}\right)\right\}.\left(5+10+...+1000\right)\)

\(\Leftrightarrow A=\left(5+10+...+1000\right).\left(5+10+...+1000\right).-\frac{21}{10}\)

Ta có : Số số hạng của dãy số : \(5+10+...+1000\) là :

\(\left(1000-5\right):5+1=200\)

\(\Rightarrow\) Tổng của dãy số : \(5+10+...+1000\) là :

\(\frac{\left(5+1000\right).200}{2}=100500\)

\(\Rightarrow A=100500.100500.\left(-\frac{21}{10}\right)\)

\(\Rightarrow A=100500^2.\left(-\frac{21}{10}\right)\)

\(\Rightarrow A=\frac{100500^2.\left(-21\right)}{10}\)

Vậy :\(A=\frac{100500^2.\left(-21\right)}{10}\)

P/s: Số to quá nên mình đề dưới dạng phân số, không tính ra kết quả cụ thể.

21 tháng 2 2022

`Answer:`

\dfrac15+\dfrac1{5+10}+\dfrac1{5+10+15}\ +\,.\!.\!.+\ \dfrac1{5+10+15\ +\,.\!.\!.+\ 100}\\=\dfrac15+\dfrac1{5.(1+2)}+\dfrac1{5.(1+2+3)}\ +\,.\!.\!.+\ \dfrac1{5.(1+2+3\ +\,.\!.\!.+\ 20)}\\=\dfrac15\left(1+\dfrac1{1+2}+\dfrac1{1+2+3}\ +\,.\!.\!.+\ \dfrac1{1+2+3\ +\,.\!.\!.+\ 20}\right)\\=\dfrac15\bigg(\dfrac22+\dfrac26+\dfrac2{12}\ +\,.\!.\!.+\ \dfrac2{20.21}\bigg)\\=\dfrac25\left(\dfrac1{1.2}+\dfrac1{2.3}+\dfrac1{3.4}\ +\,.\!.\!.+\ \dfrac1{20.21}\right)\\=\dfrac25\left(1-\dfrac12+\dfrac12-\dfrac13+\dfrac13-\dfrac14\ +\,.\!.\!.+\ \dfrac1{20}-\dfrac1{21}\right)\\=\dfrac25\left(1-\dfrac1{21}\right)\\=\dfrac25\!\cdot\!\dfrac{20}{21}\\=\dfrac8{21}

21 tháng 2 2022

`Answer:`

Mình gửi lại bài nhé. Mong lần này không bị lỗi như lần trước.

\(\dfrac15+\dfrac1{5+10}+\dfrac1{5+10+15}\ +\,.\!.\!.+\ \dfrac1{5+10+15\ +\,.\!.\!.+\ 100}\\=\dfrac15+\dfrac1{5.(1+2)}+\dfrac1{5.(1+2+3)}\ +\,.\!.\!.+\ \dfrac1{5.(1+2+3\ +\,.\!.\!.+\ 20)}\\=\dfrac15\left(1+\dfrac1{1+2}+\dfrac1{1+2+3}\ +\,.\!.\!.+\ \dfrac1{1+2+3\ +\,.\!.\!.+\ 20}\right)\\=\dfrac15\bigg(\dfrac22+\dfrac26+\dfrac2{12}\ +\,.\!.\!.+\ \dfrac2{20.21}\bigg)\\=\dfrac25\left(\dfrac1{1.2}+\dfrac1{2.3}+\dfrac1{3.4}\ +\,.\!.\!.+\ \dfrac1{20.21}\right)\\=\dfrac25\left(1-\dfrac12+\dfrac12-\dfrac13+\dfrac13-\dfrac14\ +\,.\!.\!.+\ \dfrac1{20}-\dfrac1{21}\right)\\=\dfrac25\left(1-\dfrac1{21}\right)\\=\dfrac25\!\cdot\!\dfrac{20}{21}\\=\dfrac8{21}\)