Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 - 2 - 3 + 4 + 5 - 6 - 7 + ... + 2008 + 2009 - 2010 - 2011
A = ( 1 - 2 - 3 + 4 ) + ( 5 - 6 - 7 + 8 ) + ... + ( 2005 - 2006 - 2007 + 2008 ) + ( 2009 - 2010 - 2011 )
A = 0 + 0 + ... + 0 + ( -2012 )
A = -2012
\(A=1-2-3+4+5-6-7+8-...+2005-2006-2007-2008+2009-1010-2011\)
\(< =>A=\left(1-2-3+4\right)+\left(5-6-7+8\right)+...+\left(2009-2010-2011\right)\)
\(< =>A=0+0+...+2009-2010-2011\)
\(< =>A=2009-4021=-2012\)
Ta có: A=\(\frac{1}{2011}+\frac{2}{2010}+\frac{3}{2009}+...+\frac{2009}{3}+\frac{2010}{2}+\frac{2011}{1}\)
=> A=\(\frac{2012-2011}{2011}+\frac{2012-2010}{2010}+...+\frac{2012-2}{2}+\frac{2012-1}{1}\)
=>A=\(\frac{2012}{2011}-1+\frac{2012}{2010}-1+...+\frac{2012}{2}-1+2012-1\)
=>A=\(2012\cdot\left(\frac{1}{2011}+\frac{1}{2010}+...+\frac{1}{2}\right)+1\)
=> A= \(2012\cdot\left(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{2}\right)\)
ko biết có đúng hay ko nựa sai thì bỏ qua nha ^^
a) \(\frac{2^{12}.13+2^{12}.65}{2^{10}.104}+\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)
\(=\frac{2^{10}.\left(13.4+65.4\right)}{2^{10}.104}+\frac{3^9.\left(3.11+3.5\right)}{3^9.16}\)
\(=\frac{312}{104}+\frac{48}{16}\)
=3+3=6
b) \(\frac{1.5.6+2.10.12+4.20.24+9.45.54}{1.3.5+2.6.10+4.12.20+9.27.45}\)
\(=\frac{1.5.6\left(1+2.2.2+4.4.4+9.9.9\right)}{1.3.5\left(1+2.2.2+4.4.4+9.9.9\right)}\)
\(=\frac{1.5.6}{1.3.5}\)
\(=2\)
c) 1+2-3-4+5+6-7-8+...+2009+2010-2011-2012+2013
Nhận xét:Giá trị tuyệt đối của hai số liền nhau hơn kém nhau 1 đơn vị
=> Tổng trên có 2013-1+1=2013(Số hạng)
Nhóm 4 số vào một nhóm, ta được 2013:4=503 nhóm (thừa 1 số)
=>1+2-3-4+5+6-7-8+...+2009+2010-2011-2012+2013
=1+(2-3-4+5)+(6-7-8+9)+...+(2010-2011-2012+2013)
=1+0+0+...+0 (có 503 số 0)
=1+0.503
=1+0
=1
a) A= 1/2010+1+2/2009+1+3/2008+1+...+2009/2+1+1
= 2011/2010+20011/2009+2011/2008+...+2011/2+2011/2011
= 2011(1/2+1/3+1/4+...+1/2011)
Ta có: B= 1/2+1/3+1/4+...+1/2011
suy ra A/B= 2011
Bạn giải cũng được đấy alibaba nguyễn, nhưng theo mình thì làm cách này dễ hiểu hơn!
Ta có: \(C=\frac{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}\)
Đặt \(A=\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}\)
\(A=\frac{2010}{1}+1+\frac{2009}{1}+1+\frac{2008}{1}+1+...+\frac{1}{2010}+1-2010\)
\(=\frac{2011}{1}+\frac{2011}{2}+\frac{2011}{3}+...+\frac{2011}{2010}-\frac{2011.2010}{2011}\)
\(=2011\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}-\frac{2010}{2011}\right)\)
Đặt \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}\)
\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}-1\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}-\frac{2010}{2011}\)
Ta có: \(C=\frac{A}{B}=2011\)(lấy A-B)
Ta có :
\(2010A=\dfrac{2010^{2012}+2010}{2010^{2012}+1}=\dfrac{2010^{2012}+1+2009}{2010^{2012}+1}=1+\dfrac{2009}{2010^{2012}+1}\)
\(2010B=\dfrac{2010^{2011}+2010}{2010^{2011}+1}=\dfrac{2010^{2011}+1+2009}{2010^{2011}+1}=1+\dfrac{2009}{2010^{2011}+1}\)
Vì \(1+\dfrac{2009}{2010^{2012}+1}< 1+\dfrac{2009}{2010^{2011}+1}\Rightarrow A< B\)
~ Học tốt ~
=\(\dfrac{1}{2009.\left(\dfrac{1}{2009}+\dfrac{1}{2011}+\dfrac{1}{2010}\right)}+\dfrac{1}{2010.\left(\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2011}\right)}+\dfrac{1}{2011.\left(\dfrac{1}{2011}+\dfrac{1}{2009}+\dfrac{1}{2010}\right)}\)\(=\dfrac{1}{2009}:\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right)+\dfrac{1}{2010}:\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right)+\dfrac{1}{2011}:\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right)\)
\(=\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right):\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right)=1\)
c) 1 – 2 + 3 – 4 + 5 – 6 + … + 2009 – 2010 + 2011
= 1 + ( -2 + 3 ) + ( -4 + 5 ) + … + ( -2010 + 2011 )
= 1 + 1 + 1+ … + 1 ( 1006 số hạng ) = 1006