Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{array}{l}a)\frac{{{3^{12}} + {3^{15}}}}{{1 + {3^3}}}\\ = \frac{{{3^{12}} + {3^{12}}{{.3}^3}}}{{1 + {3^3}}}\\ = \frac{{{3^{12}}.(1 + {3^3})}}{{1 + {3^3}}}\\ = {3^{12}}\\b)2:{\left( {\frac{1}{2} - \frac{2}{3}} \right)^2} + 0,{125^3}{.8^3} - {( - 12)^4}:{6^4}\\ = 2:{\left( {\frac{3}{6} - \frac{4}{6}} \right)^2} + {(0,125.8)^3} - {12^4}:{6^4}\\ = 2:{\left( {\frac{{ - 1}}{6}} \right)^2} + {1^3} - {(\frac{{12}}{6})^4}\\ = 2:\frac{1}{{36}} + 1 - {2^4}\\ = 2.36 + 1 - 16\\ = 72 + 1 - 16=57\end{array}\)
\(\begin{array}{l}a){\left( { - \frac{4}{5}} \right)^4} = \left( { - \frac{4}{5}} \right).\left( { - \frac{4}{5}} \right).\left( { - \frac{4}{5}} \right).\left( { - \frac{4}{5}} \right)\\ = \frac{{16}}{{25}}.\frac{{16}}{{25}}\\ = \frac{{256}}{{625}}\\b){(0,7)^3} = 0,7.0,7.0,7\\ = 0,49.0,7\\ = 0,343\end{array}\)
\(\begin{array}{l}a)A = 32,125 - (6,325 + 12,125) - (37 + 13,675)\\ = 32,125 - 6,325 - 12,125 - 37 - 13,675\\ = (32,125 - 12,125) + ( - 6,325 - 13,675) - 37\\ = 20 + ( - 20) - 37\\ = - 37\\b)B = 4,75 + {\left( {\frac{{ - 1}}{2}} \right)^3} + 0,{5^2} - 3.\frac{{ - 3}}{8}\\ = 4,75 + \frac{{ - 1}}{8} + 0,25 + \frac{9}{8}\\ = (4,75 + 0,25) + \left( {\frac{{ - 1}}{8} + \frac{9}{8}} \right)\\ = 5 + \frac{8}{8}\\ = 5 + 1\\ = 6\\c)C = 2021,2345.2020,1234 + 2021,2345.( - 2020,1234)\\ = 2021,2345.[2020,1234 + ( - 2020,1234)]\\ = 2021,2345.0\\ = 0\end{array}\)
\(\begin{array}{l}a)x + 7,25 = 15,75\\x = 15,75 - 7,25\\x = 8,5\end{array}\)
Vậy x = 8,5
\(\begin{array}{l}b)\left( { - \frac{1}{3}} \right) - x = \frac{{17}}{6}\\\left( { - \frac{1}{3}} \right) - \frac{{17}}{6} = x\\\frac{{ - 2}}{6} - \frac{{17}}{6} = x\\\frac{{ - 19}}{6} = x\\x = \frac{{ - 19}}{6}\end{array}\)
Vậy \(x = \frac{{ - 19}}{6}\)
Chú ý: A = B và B = A là tương đương nhau
a. Đối với biểu thức không có dấu ngoặc.
+ Nếu phép tính chỉ có cộng, trừ hoặc chỉ có nhân, chia, ta thực hiện phép tính theo thứ tự từ trái sang phải.
+ Nếu phép tính có cả cộng , trừ, nhân, chia, nâng lên lũy thừa, ta thực hiện phép nâng lên lũy thừa trước, rồi đến nhân chia, cuối cùng đến cộng trừ.
Lũy thừa --> nhân và chia --> cộng và trừ.
b. Đối với biểu thức có dấu ngoặc.
Nếu biểu thức có các dấu ngoặc : ngoặc tròn ( ), ngoặc vuông [ ], ngoặc nhọn { }, ta thực hiện phép tính theo thứ tự : ( ) --> [ ] --> { }
Áp dụng:
\(\begin{array}{l}a)10 + 36:2.3\\ = 10 + 18.3\\ = 10 + 54\\ = 64\\b)[5 + 2.(9 - {2^3})]:7\\ = [5 + 2.(9 - 8)]:7\\ = (5 + 2.1):7\\ = 7:7\\ = 1\end{array}\)
\(\begin{array}{l}a)\frac{9}{{10}} - (\frac{6}{5} - \frac{7}{4})\\ = \frac{9}{{10}} - \frac{6}{5} + \frac{7}{4}\\ = \frac{{18}}{{20}} - \frac{{24}}{{20}} + \frac{{35}}{{20}}\\ = \frac{{18 - 24 + 35}}{{20}}\\ = \frac{{29}}{{20}}\\b)6,5 + [0,75 - (8,25 - 1,75)]\\ = 6,5 + (0,75 - 8,25 + 1,75)\\ = 6,5 + 0,75 - 8,25 + 1,75\\ = 7,25 - 8,25 + 1,75\\ = ( - 1) + 1,75\\ = 0,75\end{array}\)
\(\begin{array}{l}a)A = (2 - \frac{1}{2} - \frac{1}{8}):(1 - \frac{3}{2} - \frac{3}{4})\\ = (\frac{{16}}{8} - \frac{4}{8} - \frac{1}{8}):(\frac{4}{4} - \frac{6}{4} - \frac{3}{4})\\ = \frac{{11}}{8}:\frac{{ - 5}}{4}\\ = \frac{{11}}{8}.\frac{4}{{ - 5}}\\ = \frac{{ - 11}}{{10}}\\b)B = 5 - \frac{{1 + \frac{1}{3}}}{{1 - \frac{1}{3}}}\\ = 5 - \frac{{\frac{3}{3} + \frac{1}{3}}}{{\frac{3}{3} - \frac{1}{3}}}\\ = 5 - \frac{{\frac{4}{3}}}{{\frac{2}{3}}}\\ = 5 - \frac{4}{3}:\frac{2}{3}\\ = 5 - \frac{4}{3}.\frac{3}{2}\\ = 5 - 2\\ = 3\end{array}\)
Chú ý:
Khi thực hiện phép cộng hai phân số, nếu phân số thu được chưa tối giản thì ta rút gọn thành phân số tối giản.
a) Cách 1:
\(\begin{array}{l}(8 + 2\frac{1}{3} - \frac{3}{5}) - (5 + 0,4) - (3\frac{1}{3} - 2)\\ = (8 + \frac{7}{3} - \frac{3}{5}) - (5 + \frac{4}{{10}}) - (\frac{{10}}{3} - 2)\\ = 8 + \frac{7}{3} - \frac{3}{5} - 5 - \frac{2}{5} - \frac{{10}}{3} + 2\\ = (8 - 5 + 2) + (\frac{7}{3} - \frac{{10}}{3}) - (\frac{3}{5} + \frac{2}{5})\\ = 5 + \frac{{ - 3}}{3} - \frac{5}{5}\\ = 5 + ( - 1) - 1\\ = 3\end{array}\)
Cách 2:
\(\begin{array}{l}(8 + 2\frac{1}{3} - \frac{3}{5}) - (5 + 0,4) - (3\frac{1}{3} - 2)\\ = (8 + \frac{7}{3} - \frac{3}{5}) - (5 + \frac{4}{{10}}) - (\frac{{10}}{3} - 2)\\ = (\frac{{120}}{{15}} + \frac{{35}}{{15}} - \frac{9}{{15}}) - (\frac{{25}}{5} + \frac{2}{5}) - (\frac{{10}}{3} - \frac{6}{3})\\ = \frac{{146}}{{15}} - \frac{{27}}{5} - \frac{4}{3}\\ = \frac{{146}}{{15}} - \frac{{81}}{{15}} - \frac{{20}}{{15}}\\ = \frac{{45}}{{15}}\\ = 3\end{array}\)
b)
\(\begin{array}{l}(7 - \frac{1}{2} - \frac{3}{4}):(5 - \frac{1}{4} - \frac{5}{8})\\ = (\frac{{28}}{4} - \frac{2}{4} - \frac{3}{4}):(\frac{{40}}{8} - \frac{2}{8} - \frac{5}{8})\\ = \frac{{23}}{4}:\frac{{33}}{8}\\ = \frac{{23}}{4}.\frac{8}{{33}}\\ = \frac{{46}}{{33}}\end{array}\)
\(\begin{array}{l}a)\left( {\frac{2}{3} + \frac{1}{6}} \right):\frac{5}{4} + \left( {\frac{1}{4} + \frac{3}{8}} \right):\frac{5}{2}\\ = \left( {\frac{4}{6} + \frac{1}{6}} \right).\frac{4}{5} + \left( {\frac{2}{8} + \frac{3}{8}} \right).\frac{2}{5}\\ = \frac{5}{6}.\frac{4}{5} + \frac{5}{8}.\frac{2}{5}\\ = \frac{2}{3} + \frac{1}{4}\\ = \frac{8}{{12}} + \frac{3}{{12}}\\ = \frac{{11}}{{12}}\\b)\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{2}{7}} \right)\\ = \frac{5}{9}:\left( {\frac{2}{{22}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{4}{{14}}} \right)\\ = \frac{5}{9}:\frac{{ - 3}}{{22}} + \frac{7}{4}.\frac{{ - 3}}{{14}}\\ = \frac{5}{9}.\frac{{ - 22}}{3} + \frac{{ - 3}}{8}\\ = \frac{{ - 110}}{{27}} + \frac{{ - 3}}{8}\\ = \frac{{ - 880}}{{216}} + \frac{{ - 81}}{{216}}\\ = \frac{{ - 961}}{{216}}\end{array}\)
\(\begin{array}{l}a){\left( {\frac{2}{3}} \right)^{10}}{.3^{10}} = \frac{{{2^{10}}}}{{{3^{10}}}}{.3^{10}} = {2^{10}}\\b){( - 125)^3}:{25^3} = {( - 125:25)^3} = {( - 5)^3} = - 125\\c){(0,08)^3}{.10^6} = {(0,08)^3}{.100^3} = {(0,08.100)^3} = {8^3}\end{array}\)