Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(M=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\) ta có :
\(M\frac{c}{a-b}=1+\frac{c}{a-b}\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\)
\(=1+\frac{c}{a-b}.\frac{b^2-bc+ac-a^2}{ab}\)
\(=1+\frac{c}{a-b}.\frac{\left(a-b\right)\left(c-a-b\right)}{ab}\)
\(=1+\frac{2c^2}{ab}=1+\frac{2c^3}{abc}\)
Tương tự \(M.\frac{a}{b-c}=1+\frac{2a^3}{abc}\)
và \(M.\frac{b}{c-a}=1+\frac{2b^3}{abc}\)
Vậy \(A=3+\frac{2\left(a^3+b^3+c^3\right)}{abc}=9\)
( Vì \(a^3+b^3+c^3=3abc\). Lại do . ( Phân tích là ra hết ).\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
=> ....
Gọi \(M=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b},\)ta có :
\(M.\frac{c}{a-b}=1+\frac{c}{a-b}\left(\frac{b-c}{a}+\frac{c-a}{b}\right)=1+\frac{c}{a-b}.\frac{b^2-bc+ac-a^2}{ab}\)
\(=1+\frac{c}{a-b}.\frac{\left(a-b\right)\left(c-a-b\right)}{ab}=1+\frac{2c^2}{ab}=1+\frac{2c^3}{abc}\)
Tương tự : \(M.\frac{a}{b-c}=1+\frac{2a^3}{abc},M.\frac{b}{c-a}=1+\frac{2b^3}{abc}.\)
Vậy \(A=3+\frac{2\left(a^3+b^3+c^3\right)}{abc}=9\)
=0 chu bang may rua ban
0
mà làm sao