Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,( √6+2)(√3-√2)
<=> ( √2√3+2)(√3-√2)
<=> √2(√3+√2)(√3-√2)
<=> √2( (√3)2-(√2)2) = √2
b, (√3+1)2-2√3+4
<=> (√3)2 +2√3 +1 -2√3+4 =8
c, (1+√2-√3)(√2+√3)
<=>√2+√3+(√2)2+√6-√6-(√3)2
<=> √2+√3-1
d, √3(√2-√3)2-(√3+√2)
<=> √3( 2-2√6+3)-√3-√2
<=> 5√3-2√18-√3-√2
<=> 4√3-√2(√36-1)
<=> 4√3 - 3√2
e, (1+2√3-√2)(1+2√3+√2)
<=> (1+2√3)2-(√2)2
<=> (1+4√3+(2√3)2)-2
<=> 1+4√3+12-2= 11+4√3
g, (1-√3)2(1+2√3)2
<=>(1-2√3+3)(1+4√3+12)
<=>( 4-2√3)(13+4√3)
<=> 52+16√3-26√3-24
<=> -10√3+28
a: \(=\dfrac{-4}{5}\cdot\dfrac{5}{4}=-1\)
b: =8
c: \(=2-\sqrt{3}\)
d: \(=3-2\sqrt{2}\)
e: \(=\dfrac{1}{\sqrt{2}}-\dfrac{1}{2}\)
a) \(\sqrt{3^2}-\sqrt{7^2}+\sqrt{\left(-1\right)^2}=|3|-|7|+|-1|=3-7+1=-3\)
b) \(-2\sqrt{\left(-2\right)^2}+\sqrt{\left(-5\right)^2}+\sqrt{3^2}=-2|2|+|-5|+\left|3\right|=-4+5+3=4\)
c) \(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}=\left|2-\sqrt{2}\right|+\left|2+\sqrt{2}\right|=2-\sqrt{2}+2+\sqrt{2}=4\)
d) \(\sqrt{\left(3\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}=\left|3\sqrt{2}\right|-\left|1-\sqrt{2}\right|=3\sqrt{2}-\sqrt{2}+1=2\sqrt{2}+1\)
e) \(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(\sqrt{2}+1\right)^2}=\left|\sqrt{2}-1\right|+\left|\sqrt{2}+1\right|=\sqrt{2}-1+\sqrt{2}+1=2\sqrt{2}\)
f) \(\sqrt{9-4\sqrt{5}}+\sqrt{9+4\sqrt{5}}=\sqrt{\left(\sqrt{5}-2\right)^2}+\sqrt{\left(\sqrt{5}+2\right)^2}=\left|\sqrt{5}-2\right|+\left|\sqrt{5}+2\right|=\sqrt{5}-2+\sqrt{5}+2=2\sqrt{5}\)
g) \(\sqrt{9-4\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{9-2\sqrt{8}}+\sqrt{2-2\sqrt{2}.3+9}=\sqrt{\left(\sqrt{8}-1\right)^2}+\sqrt{\left(\sqrt{2}-3\right)^2}=\sqrt{8}-1+3-\sqrt{2}=2-\sqrt{2}+\sqrt{8}\)
h) \(\sqrt{12+8\sqrt{2}}+\sqrt{6-4\sqrt{2}}=\sqrt{12+2\sqrt{4}\sqrt{8}}+\sqrt{6-2\sqrt{2}\sqrt{4}}=\sqrt{\left(\sqrt{4}+\sqrt{8}\right)^2}+\sqrt{\left(\sqrt{4}-\sqrt{2}\right)^2}=\sqrt{4}+\sqrt{8}+\sqrt{4}-\sqrt{2}\)
k) \(\left(2-\sqrt{3}\right)\sqrt{7+4\sqrt{3}}=\left(2-\sqrt{3}\right)\sqrt{\left(\sqrt{3}+2\right)^2}=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3=1\)
B1:
1. \(\sqrt{12.5}\cdot\sqrt{0.2}\cdot\sqrt{0.1}\) \(=\sqrt{12.5\cdot0.2\cdot0.1}\) \(=\sqrt{0.25}=0.5\)
2.\(\sqrt{48.4}\cdot\sqrt{5}\cdot\sqrt{0.5}\) = \(\sqrt{48.4\cdot5\cdot0.5}\) =\(\sqrt{121}=11\)
B2:
a, \(\left(\sqrt{7}+\sqrt{3}\right)^2=7+2\cdot\sqrt{7}\cdot\sqrt{3}+3=7+2\cdot\sqrt{21}+3\)\(=10+2\sqrt{21}\)
b,\(\left(\sqrt{11}-\sqrt{5}\right)^2=11-2\sqrt{55}+5=16-2\sqrt{55}\)
c,\(\left(\sqrt{x}+\sqrt{y}\right) ^2=x+2\sqrt{xy}+y\)
d.\(\left(\sqrt{13}+\sqrt{7}\right)^2=13+2\sqrt{7}+7=20+2\sqrt{7}\)
e,\(\left(\sqrt{a}-\sqrt{b}\right)^2=a-2\sqrt{ab}+b\)
f,\(\left(\sqrt{3}-1\right)^2=3-2\sqrt{3}+1=4-2\sqrt{3}\)
a) \(\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}=\sqrt{2}+\sqrt{3}\)
b) \(\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)
c) \(\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}-\sqrt{3}+\sqrt{5}+\sqrt{3}\)\(=2\sqrt{5}\)
d) \(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}=\sqrt{2}-\sqrt{3}-1-\sqrt{3}\)
\(=\sqrt{12}-\sqrt{2}-1\)
e) \(\sqrt{\left(\sqrt{3-1}^2\right)-\sqrt{3}}=\sqrt{\sqrt{2}^2-\sqrt{3}}=\sqrt{2-\sqrt{3}}\)
P/S: Ko chắc
\(a,\dfrac{-3}{5}.\sqrt{\left(-0.5\right)^2}\\ =\dfrac{-3}{5}.0,5\\ =\dfrac{-3}{5}.\dfrac{1}{2}\\ =-\dfrac{3}{10}\)
Câu (b) nhìn hơi lạ lạ á :v
\(c,\sqrt{\left(1-\sqrt{7}\right)^2}+\sqrt{7}\\ =\sqrt{7}-1+\sqrt{7}\\ =2\sqrt{7}-1\)
\(d,\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\\ =\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\\ =3+\sqrt{2}-\left(3-\sqrt{2}\right)\\ =3+\sqrt{2}-3+\sqrt{2}\\ =2\sqrt{2}\)
a) \(\left(\sqrt{8}+\sqrt{72}-\sqrt{2}\right).\sqrt{2}\)
\(=\left(2\sqrt{2}+6\sqrt{2}-\sqrt{2}\right).\sqrt{2}\)
\(=7\sqrt{2}.\sqrt{2}=7.2=14\)
b) \(\left(\sqrt{5}+\sqrt{2}+1\right)\left(\sqrt{5}-1\right)\)
\(=5-\sqrt{5}+\sqrt{10}-\sqrt{2}+\sqrt{5}-1\)
\(=4+\sqrt{10}-\sqrt{2}\)
c) \(\left(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\right)^2\)
\(=\left(\sqrt{4+\sqrt{7}}\right)^2-2\sqrt{4+\sqrt{7}}\sqrt{4-\sqrt{7}}+\left(\sqrt{4-\sqrt{7}}\right)^2\)
\(=\left(4+\sqrt{7}\right)-6+\left(4-\sqrt{7}\right)\)
\(=4+\sqrt{7}-6+4-\sqrt{7}=2\)
d) \(\left(\sqrt{2}+1+\sqrt{3}\right).\left(\sqrt{2}+1-\sqrt{3}\right)\)
\(=\left(\sqrt{2}+1\right)^2-3=2+2\sqrt{2}+1-3=2\sqrt{2}\)
e) \(\left(\sqrt{\frac{9}{2}}+\sqrt{\frac{1}{2}}-\sqrt{2}\right).\sqrt{2}\)
\(=3+1-2=2\)(nhân vào)
f) \(\left(5\sqrt{3}+3\sqrt{5}\right):\sqrt{15}\)
\(=\left(\sqrt{75}+\sqrt{45}\right):\sqrt{15}=\sqrt{5}+\sqrt{3}\)(chia đa tức cho đơn thức)
có sai xót mong m.n bỏ qa cho ♥
a) \(\sqrt{25}+\sqrt{9}-\sqrt{16}\) = \(\sqrt{5^2}+\sqrt{3^2}-\sqrt{4^2}\) = 5 + 3 - 4 = 4
b) \(\sqrt{0,16}+\sqrt{0,01}+\sqrt{0,25}\) = 0,4 + 0,1 + 0,5 = 1
c) \(\left(\sqrt{3^2}\right)-\left(\sqrt{2^2}\right)+\left(\sqrt{5^2}\right)\)
= 3 - 2 + 5 = 6
d) \(\sqrt{4}-\left(-\sqrt{3}\right)^2+\sqrt{49}\) = 2 - 3 + 7 = 6
e) \(\left(2\sqrt{2}\right)^2-\left(3\sqrt{3}\right)^2\)
= \(\left(\sqrt{8}\right)^2-\left(\sqrt{27}\right)^2\) = 8 - 27 = -19
f) \(\left(-2\sqrt{2}\right)^2+\left(3\sqrt{3}\right)^2\) = 8 + 27 = 35
\(a,\sqrt{0,1^2}=0,1\)
\(b,\sqrt{\left(-0,4\right)^2}=|-0,4|=0,4\)
\(c,-\sqrt{\left(-1,7\right)^2}=-|-1,7|=-1,7\)
\(d,-0,5\sqrt{\left(-0,5\right)^4}=\frac{-1}{2}\sqrt{[\left(\frac{-1}{2}\right)^2]^2}=-\frac{1}{2}.\left(\frac{1}{2}\right)^2=\frac{-1}{2}.\frac{1}{4}=\frac{-1}{8}\)
\(e,\sqrt{\left(1-\sqrt{2}\right)^2}=|1-\sqrt{2}|=\sqrt{2}-1\)
\(g,\sqrt{\left(\sqrt{3}-1\right)^2}=|\sqrt{3}-1|=\sqrt{3}-1\)
a là 0,1
b là 0,4