K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2017

\(A=xemlai\) chưa hưa hiểu Quy luật

\(B=\frac{\left(n.\left(n+2\right)+1\right)}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\)

\(B=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.\frac{5.5}{4.5}...\frac{98.98}{97.99}\frac{99.99}{98.100}\frac{100.100}{99.101}\\\)

\(B=\frac{2.100}{1.101}=\frac{200}{101}\)

30 tháng 3 2017

sao bai nay ma dc goi la lop 7 a

30 tháng 3 2017

4/3 .9/8 .16/15 ......10000/9999

2.2 .3.3.4.4.....100.100 /1.3.2.4.3.5.....99.101

( 2.3.4 ....100 ) .( 2.3.4 ....100) / ( 1.2.3.....99). (3.4.5...101 )

100*2 /101

200/101

chú thích không có trong bài nhé

các dâu hiệu nhận biết

" ..........." là dấu nhân

"  /  " là dâu của phân số

"  *  " cũng là dấu nhân nha bạn

29 tháng 6 2015

\(A=\frac{20}{21}.\frac{27}{28}.\frac{35}{36}....\frac{1325}{1326}=\frac{40}{42}.\frac{54}{56}.\frac{70}{72}....\frac{2650}{2652}\)

\(A=\frac{5.8}{6.7}.\frac{6.9}{7.8}.\frac{7.10}{8.9}....\frac{50.53}{51.52}=\frac{\left(5.6.7...50\right).\left(8.9.10...53\right)}{\left(6.7.8...51\right).\left(7.8.9...52\right)}=\frac{5.53}{51.7}=..\)

29 tháng 6 2015

quy luat la toi ko biet

7 tháng 3 2018

\(S=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2016.2018}\right)\)

\(\Rightarrow S=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}.....\frac{2016.2018+1}{2016.2018}\)

\(\Rightarrow S=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{2017^2}{2016.2018}\)

\(\Rightarrow S=\frac{\left(2.3.4.....2017\right)\left(2.3.4.....2017\right)}{\left(1.2.3.....2016\right)\left(3.4.5.....2018\right)}\)

\(\Rightarrow S=\frac{2017.2}{1.2018}=\frac{4034}{2018}=\frac{2017}{1009}\)

9 tháng 4 2017

2A=\(\left(1+\frac{1}{3}\right)\)\(\left(1+\frac{1}{8}\right)\)\(\left(1+\frac{1}{15}\right)\)\(.......\)\(\left(1+\frac{1}{4064255}\right)\)

2A = \(\frac{4}{3}\)\(.\)\(\frac{9}{8}\)\(.\)\(\frac{16}{15}\)\(......\)\(\frac{4064256}{4064255}\)

2A = \(\frac{2.2}{1.3}\)\(.\)\(\frac{3.3}{2.4}\)\(.\)\(\frac{4.4}{3.5}\)\(......\)\(\frac{2016.2016}{2015.2017}\)

2A = \(\frac{2.3.4....2016}{1.2.3.....2015}\)\(.\)\(\frac{2.3.4....2016}{3.4.5....2017}\)

2A = \(\frac{2016}{1}\)\(.\)\(\frac{2}{2017}\)

2A = \(\frac{4032}{2017}\)

A = \(\frac{4032}{2017}\)\(:2\)

A = \(\frac{2016}{2017}\)

6 tháng 7 2016

\(\left(1-\frac{1}{21}\right).\left(1-\frac{1}{28}\right).\left(1-\frac{1}{36}\right)...\left(1-\frac{1}{1326}\right)\)

\(=\frac{20}{21}.\frac{27}{28}.\frac{35}{36}...\frac{1325}{1326}\)

\(=\frac{40}{42}.\frac{54}{56}.\frac{70}{72}...\frac{2650}{2652}\)

\(=\frac{5.8}{6.7}.\frac{6.9}{7.8}.\frac{7.10}{8.9}...\frac{50.53}{51.52}\)

\(=\frac{5.6.7...50}{7.8.9...52}.\frac{8.9.10...53}{6.7.8...51}\)

\(=\frac{5.6}{51.52}.\frac{52.53}{6.7}\)

\(=\frac{5.52}{51.7}=\frac{260}{357}\)

Ủng hộ mk nha ^_-

1 tháng 11 2019

\(B=\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n.\left(n+2\right)}\right)\)

\(=\left(\frac{1.3+1}{1.3}\right).\left(\frac{2.4+1}{2.4}\right).\left(\frac{3.5+1}{3.5}\right)...\left(\frac{n.\left(n+2\right)+1}{n.\left(n+2\right)}\right)\)

\(=\left(\frac{2^2}{1.3}\right).\left(\frac{3^2}{2.4}\right).\left(\frac{4^2}{3.5}\right)...\left(\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\right)\)

\(=\frac{2.3.4...\left(n+1\right)}{1.2.3...n}.\frac{2.3.4...\left(n+1\right)}{3.4.5...\left(n+2\right)}\)

\(=\frac{\left(n+1\right)}{1}.\frac{2}{\left(n+2\right)}\)

\(=\frac{2.\left(n+1\right)}{1.\left(n+2\right)}=2.\frac{n+1}{n+2}< 2\)(vì \(\frac{n+1}{n+2}< 1\))

Vậy B < 2

19 tháng 9 2019

Ta có:

\(1+\frac{1}{1.3}=\frac{4}{1.3}=\frac{2^2}{1.3}\)

\(1+\frac{1}{2.4}=\frac{9}{2.4}=\frac{3^2}{2.4}\)

\(1+\frac{1}{3.5}=\frac{16}{3.5}=\frac{4^2}{3.5}\)

...

\(1+\frac{1}{n\left(n+2\right)}=\frac{n^2+2n+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

=>

\(B=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2^2.3^2.4^2...\left(n+1\right)^2}{1.2.3^2.4^2...\left(n+1\right)\left(n+2\right)}=\frac{2.\left(n+1\right)}{1.\left(n+2\right)}\)

\(=\frac{2\left(n+2\right)-2}{n+2}=2-\frac{2}{n+2}< 2\)

Vậy B < 2 

9 tháng 2 2018

\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{20.22}\right)\)

\(=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}.....\frac{20.22+1}{20.22}\)

\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{21^2}{20.22}\)

\(=\frac{\left(2.3.4.....21\right)\left(2.3.4.....21\right)}{\left(1.2.3.....20\right)\left(3.4.5.....22\right)}\)

\(=\frac{21.2}{22}=\frac{42}{22}=\frac{21}{11}\)