Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. sai dấu nhé
2.a, \(\frac{45^{10}.5^{20}}{75^{15}}=\frac{\left(3^2.5\right)^{10}.5^{20}}{\left(5^2.3\right)^{15}}=\frac{3^{20}.5^{30}}{5^{30}.3^{15}}=3^5=243\)
b, \(\frac{\left(0,8\right)^5}{\left(0,4\right)^6}=\frac{\left(\frac{4}{5}\right)^5}{\left(\frac{2}{5}\right)^6}=\frac{\left(\frac{2}{5}\cdot2\right)^5}{\left(\frac{2}{5}\right)^6}=\frac{\left(\frac{2}{5}\right)^5\cdot2^5}{\left(\frac{2}{5}\right)^5\cdot\frac{2}{5}}=2^5\div\frac{2}{5}=32\cdot\frac{5}{2}=80\)
c, \(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}=\frac{2^{15}.3^2}{2^{15}}=3^2=9\)
\(\frac{5.18-10.27+15.36}{10.36-20.54+30.72}\)
\(=\frac{5.18-10.27+15.36}{5.2.18.2-10.2.27.2+15.2.36.2}\)
\(=\frac{5.18-10.27+15.36}{5.8.2.2-10.27.2.2+15.36.2.2}\)
\(=\frac{1}{2.2-2.2+2.2}\)
\(=\frac{1}{2.2}=\frac{1}{4}\)
a) Ta có: \(\frac{1}{2}+\frac{2}{3}:\left(x-1\right)=\frac{2}{3}\)
⇒\(\frac{2}{3}:\left(x-1\right)=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}\)
⇒\(x-1=\frac{2}{3}:\frac{1}{6}=\frac{2}{3}\cdot6=4\)
hay x=5
Vậy: x=5
b) \(5,4-3\left[x-120\%\right]=\frac{3}{10}\)
⇔\(\frac{27}{5}-3\cdot\left(x-\frac{6}{5}\right)=\frac{3}{10}\)
⇔\(3\left(x-\frac{6}{5}\right)=\frac{27}{5}-\frac{3}{10}=\frac{51}{10}\)
hay \(x-\frac{6}{5}=\frac{51}{10}\cdot\frac{1}{3}=\frac{17}{10}\)
⇔\(x=\frac{17}{10}+\frac{6}{5}=\frac{29}{10}\)
Vậy: \(x=\frac{29}{10}\)
c) \(10\cdot3^{x+2}-3^x=89\)
\(\Leftrightarrow10\cdot3^2\cdot3^x-3^x=89\)
\(\Leftrightarrow3^x\left(90-1\right)=89\)
\(\Leftrightarrow3^x=1\)
hay x=0
Vậy: x=0
d) \(5\cdot\left(x-0,2\right)=3x+\left(\frac{-2}{3}\right)^3\)
⇒\(5\cdot\left(x-\frac{1}{5}\right)=3x+\frac{-8}{27}\)
\(\Leftrightarrow5x-1-3x-\frac{-8}{27}=0\)
\(\Leftrightarrow2x-\frac{19}{27}=0\)
\(\Leftrightarrow2x=\frac{19}{27}\)
hay \(x=\frac{\frac{19}{27}}{2}=\frac{19}{27}\cdot\frac{1}{2}=\frac{19}{54}\)
Vậy: \(x=\frac{19}{54}\)
e) \(\left(2x+\frac{3}{4}\right)^2-1,5=2\frac{1}{2}\)
\(\Leftrightarrow\left(2x+\frac{3}{4}\right)^2=\frac{5}{2}+\frac{3}{2}=\frac{8}{2}=4\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{3}{2}=-2\\2x+\frac{3}{2}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-2-\frac{3}{2}\\2x=2-\frac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-\frac{7}{2}\\2x=\frac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-7}{2}\cdot\frac{1}{2}\\x=\frac{1}{2}\cdot\frac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-7}{4}\\x=\frac{1}{4}\end{matrix}\right.\)
Vậy: \(x\in\left\{-\frac{7}{4};\frac{1}{4}\right\}\)
Câu 1 :
a) 8. ( \(-\frac{1}{2}\))2
= 8. \(\frac{1}{4}\)
= 2
b) 5,3 . 4,7 + (-1,7) . 5,3 - 5,9
= 5,3 . [4,7 + (-1,7)] - 5,9
= 5,3 . 3 - 5,9
= 15,9 - 5,9
= 10,9
c) \(\frac{2}{3} + (-\frac{1}{3}) + \frac{7}{15}\)
\(=\frac{1}{3} + \frac{7}{15}\)
\(= \frac{5}{15} + \frac{7}{15}\)
\(=\frac{12}{15}\)
d) 40 : {[11 + (26-33)]}
= 40 : {[11 + (26-27)]}
= 40 : {[11 + (-1)]}
= 40 : 10
= 4
\(A=\left(\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}+\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5-\frac{5}{11}-\frac{5}{12}}\right):\frac{1890}{2005}+115\)
\(A=\left(\frac{\frac{3}{2}+1-\frac{3}{4}}{\frac{5}{2}+\frac{5}{3}-\frac{5}{4}}+\frac{\frac{3}{8}-\frac{3}{10}+\frac{3}{11}+\frac{3}{12}}{\frac{-5}{8}+\frac{1}{2}-\frac{5}{11}-\frac{5}{12}}\right):\frac{378}{401}+115\)
\(A=\left(\frac{3.\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)}{5.\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)}+\frac{-3.\left(\frac{-1}{8}+\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)}{5.\left(\frac{-1}{8}+\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)}\right).\frac{401}{378}+115\)
\(A=\left(\frac{3}{5}+\frac{-3}{5}\right).\frac{401}{378}+115\)
\(A=0.\frac{401}{378}+115=115\)
A = \(\left(\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}+\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5-\frac{5}{11}-\frac{5}{12}}\right):\frac{1890}{2005}+115\)
= \(\left(\frac{\frac{3}{2}+\frac{3}{3}-\frac{3}{4}}{\frac{5}{2}+\frac{5}{3}-\frac{5}{4}}+\frac{\frac{3.125}{100}-\frac{3}{10}+\frac{3}{11}+\frac{3}{12}}{-\frac{5.125}{100}+\frac{5}{10}-\frac{5}{11}-\frac{5}{12}}\right):\frac{1890}{2005}+115\)
= \(\left(\frac{3\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)}{5\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)}+\frac{3\left(\frac{125}{100}-\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)}{-5\left(\frac{125}{100}-\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)}\right):\frac{1890}{2005}+115\)
= \(\left(\frac{3}{5}+-\frac{3}{5}\right):\frac{1890}{2005}+115\)
= 115
a) \(\frac{3^{17}.81^{11}}{27^{10}.9^{15}}=\frac{3^{17}.\left(3^4\right)^{11}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\frac{3^{17}.3^{44}}{3^{30}.3^{30}}=\frac{3^{61}}{3^{60}}=3\)
b) \(\frac{9^2.2^{11}}{16^2.6^3}=\frac{\left(3^2\right)^2.2^{11}}{\left(2^4\right)^2.2^3.3^3}=\frac{3^4.2^{11}}{2^8.2^3.3^3}=\frac{3^4.2^{11}}{2^{11}.3^3}=3\)
c) \(\frac{2^{10}.3^{31}+2^{40}.3^6}{2^{11}.3^{31}+2^{41}.3^6}=\frac{2^{10}.3^{31}+2^{40}.3^6}{2.\left(2^{10}.3^{31}+2^{40}.3^6\right)}=\frac{1}{2}\)
a) \(\frac{120^3}{40^3}=\left(\frac{120}{40}\right)^3=3^3=27\)
b) \(\frac{3^2}{0,375^2}=\left(\frac{3}{0,375}\right)^2=8^2=64\)
HỌC TỐT