\(Tính:\)

\(A=\frac{1}{1.2}+\frac{1}{2.0}+\frac{1}{3.0}+\frac{...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2016

a, \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)

\(=\frac{1}{5}-\frac{1}{25}\)

\(=\frac{4}{25}\)

b, \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

Gọi biểu thức trên là A 

3 tháng 4 2018

1/5.6 + 1/6.7 + 1/7.8 +...+ 1/24.25

=1/5 - 1/6 + 1/6-1/7 +1/7-1/8 + ... + 1/24-1/25

=> Kết quả là: 1/5 - 1/25 = 4/25

b) 2/1.3 + 2/3.5 + 2/5.7 + 2/7.9+...+ 2/99.101

=2/1-2/3 + 2/3-2/5 + 2/5-2/7 + 2/7-2/9 + ... + 2/99-2/101

=> kết quả là 2/1 - 2/101 =200/101

3 tháng 4 2018

a) \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\)

=\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)

=\(\frac{1}{5}-\frac{1}{25}\)

=\(\frac{4}{25}\)

b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)

=\(2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)

=\(2.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)

=\(2.\left(\frac{1}{1}-\frac{1}{101}\right)\)

=\(2.\frac{100}{101}\)

=\(\frac{200}{101}\)

18 tháng 6 2017

bạn phải cho ra 2 số cuối thì mới làm đc nha có 1 s
ố cuối ko làm đc đâu 

18 tháng 6 2017

A= 1-1/2 + 1-1/3 + 1/2-1/5 + 1/3-1/8+ 1/5-1/13+1/8- 1/21 +....+ 1/610- 1/1597

A= 1/610

29 tháng 6 2020

A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

B = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}=\frac{\left(2.3.4.5\right).\left(2.3.4.5\right)}{\left(1.2.3.4\right).\left(3.4.5.6\right)}=\frac{5.2}{1.6}=\frac{5}{3}\)

C = \(\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)

\(=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{61}\right)=\frac{3}{2}.\frac{56}{305}=\frac{74}{305}\)

29 tháng 6 2020

Bài làm:

1) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}=\frac{49}{50}\)

2) \(B=\frac{2^2.3^2.4^2.5^2}{1.2.3^2.4^2.5.6}=\frac{2.5}{6}=\frac{5}{3}\)

3) \(C=\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}\)

\(C=\frac{3}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)

\(C=\frac{3}{2}\left(\frac{7-5}{5.7}+\frac{9-7}{7.9}+...+\frac{61-59}{59.61}\right)\)

\(C=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)\)

\(C=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{61}\right)\)

\(C=\frac{3}{2}.\frac{56}{305}=\frac{84}{305}\)