Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`a.`
\(0,3-\dfrac{4}{9}\div\dfrac{4}{3}\cdot\dfrac{6}{5}+1\)
`=`\(0,3-\dfrac{1}{3}\cdot\dfrac{6}{5}+1\)
`=`\(0,3-0,4+1\)
`= -0,1 + 1`
`= 0,9`
`b.`
\(1+2\div\left(\dfrac{2}{3}-\dfrac{1}{6}\right)\cdot\left(-2,25\right)\)
`=`\(1+2\div\dfrac{1}{2}\cdot\left(-2,25\right)\)
`=`\(1+4\cdot\left(-2,25\right)\)
`= 1+ (-9) = -8`
`c.`
\(\left[\left(\dfrac{1}{4}-0,5\right)\cdot2+\dfrac{8}{3}\right]\div2\)
`=`\(\left(-\dfrac{1}{4}\cdot2+\dfrac{8}{3}\right)\div2\)
`=`\(\left(-\dfrac{1}{2}+\dfrac{8}{3}\right)\div2\)
`=`\(\dfrac{13}{6}\div2\)
`=`\(\dfrac{13}{12}\)
`d.`
\(\left[\left(\dfrac{3}{8}-\dfrac{5}{12}\right)\cdot6+\dfrac{1}{3}\right]\cdot4\)
`=`\(\left(-\dfrac{1}{24}\cdot6+\dfrac{1}{3}\right)\cdot4\)
`=`\(\left(-\dfrac{1}{4}+\dfrac{1}{3}\right)\cdot4\)
`=`\(\dfrac{1}{12}\cdot4=\dfrac{1}{3}\)
`e.`
\(\left(\dfrac{4}{5}-1\right)\div\dfrac{3}{5}-\dfrac{2}{3}\cdot0,5\)
`=`\(-\dfrac{1}{5}\div\dfrac{3}{5}-\dfrac{1}{3}\)
`=`\(-\dfrac{1}{3}-\dfrac{1}{3}=-\dfrac{2}{3}\)
`f.`
\(0,8\div\left\{0,2-7\left[\dfrac{1}{6}+\left(\dfrac{5}{21}-\dfrac{5}{14}\right)\right]\right\}\)
`=`\(0,8\div\left[0,2-7\left(\dfrac{1}{6}-\dfrac{5}{42}\right)\right]\)
`=`\(0,8\div\left(0,2-7\cdot\dfrac{1}{21}\right)\)
`=`\(0,8\div\left(0,2-\dfrac{1}{3}\right)\)
`= 0,8 \div (-2/15)`
`=-6`
`@` `yHGiangg.`
a. 5 - 3(x + 4) = -1
⇔ 5 - 3x - 12 = -1
⇔ 3x = -1 - 5 + 12
⇔ 3x = 6
⇔ x = 2
\(d,2x^2-3=5\)
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow x=\pm2\)
\(e,x\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=0\end{matrix}\right.\)
Bài 1.
\(a,\left(2^4\cdot3\cdot5^2\right):\left\{450:\left[450-\left(4\cdot5^3-2^3\cdot5^2\right)\right]\right\}\)
\(=\left(16\cdot3\cdot25\right):\left\{450:\left[450- \left(4\cdot125-8\cdot25\right)\right]\right\}\)
\(=\left(48\cdot25\right):\left\{450:\left[450-\left(500-200\right)\right]\right\}\)
\(=1200:\left[450:\left(450-300\right)\right]\)
\(=1200:\left(450:150\right)\)
\(=1200:3\)
\(=400\)
\(---\)
\(b,3^3\cdot5^2-20\left\{90-\left[164-2\cdot\left(7^8:7^6+7^0\right)\right]\right\}\)
\(=27\cdot25-20\left\{90-\left[164-2\cdot\left(7^2+1\right)\right]\right\}\)
\(=675-20\left\{90-\left[164-2\cdot\left(49+1\right)\right]\right\}\)
\(=675-20\left[90-\left(164-2\cdot50\right)\right]\)
\(=675-20\left[90-\left(164-100\right)\right]\)
\(=675-20\left(90-64\right)\)
\(=675-20\cdot26\)
\(=675-520\)
\(=155\)
\(---\)
\(c,\left[\left(18^7:18^6-17\right)\cdot2022-1986\right]\cdot5\cdot1^{2022}-13^2\cdot2020^0\)
\(=\left[\left(18-17\right)\cdot2022-1986\right]\cdot5\cdot1-169\cdot1\)
\(=\left(1\cdot2022-1986\right)\cdot5-169\)
\(=\left(2022-1986\right)\cdot5-169\)
\(=36\cdot5-169\)
\(=180-169\)
\(=11\)
Bài 2.
\(a) (2^x+1)^2+3\cdot(2^2+1)=2^2\cdot10\\\Rightarrow (2^x+1)^2+3\cdot(4+1)=4\cdot10\\\Rightarrow (2^x+1)^2+3\cdot5=40\\\Rightarrow (2^x+1)^2+15=40\\\Rightarrow (2^x+1)^2=40-15\\\Rightarrow (2^x+1)^2=25\\\Rightarrow (2^x+1)^2= (\pm 5)^2\\\Rightarrow \left[\begin{array}{} 2^x+1=5\\ 2^x+1=-5 \end{array} \right.\\ \Rightarrow \left[\begin{array}{} 2^x=4\\ 2^x=-6 (vô.lí) \end{array} \right. \\ \Rightarrow 2^x=2^2\\\Rightarrow x=2\)
Vậy \(x=2\).
\(---\)
\(b)3\cdot(x-7)+2\cdot(x+5)=41\\\Rightarrow 3\cdot x+3\cdot(-7)+2\cdot x+2\cdot5=41\\\Rightarrow 3x-21+2x+10=41\\\Rightarrow (3x+2x)+(-21+10)=41\\\Rightarrow 5x-11=41\\\Rightarrow 5x=41+11\\\Rightarrow 5x=52\\\Rightarrow x=\dfrac{52}{5}\)
Vậy \(x=\dfrac{52}{5}\).
\(Toru\)
b: Ta có: \(1992+\left(-53\right)+158+\left(-247\right)+\left(-1592\right)\)
\(=\left(1992-1592\right)+\left(-53-247\right)+158\)
\(=400-300+158=258\)
Ta có công thức tổng quát như sau:
\(A=n^k+n^{k+1}+n^{k+2}+...+n^{k+x}\Rightarrow A=\dfrac{n^{k+x+1}-n^k}{n-1}\)
Áp dụng ta có:
\(A=1+4+4^2+...+4^6=\dfrac{4^7-1}{3}\)
\(\Rightarrow B-3A=4^7-3\cdot\dfrac{4^7-1}{3}=1\)
______
\(A=2^0+2^1+...+2^{2008}=2^{2009}-1\)
\(\Rightarrow B-A=2^{2009}-2^{2009}+1=1\)
_____
\(A=1+3+3^2+....+3^{2006}=\dfrac{3^{2007}-1}{2}\)
\(\Rightarrow B-2A=3^{2007}-2\cdot\dfrac{3^{2007}-1}{2}=1\)
a/ 216
b/ 6561
c/ 7
d/ 2009
k mình