\(A=1.2+2.3+3.4+...+99.100\)

PHẢI GIẢI RA ĐẦY ĐỦ NHA

AI LÀM NHANH...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2016

3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)

3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

3A=98.100.101

A=99.100.101 / 3

A=333300

Mình cho bạn dạng tổng quát nha

1.2+2.3+...+n.(n+1)=n(n+1)(n+2) / 3

2 tháng 4 2016

3A=1.2.3+2.3.(4-1)+...........+99.100.(101-98)

3A=1.2.3+2.3.4-1.2.3+............+99.100.101-98.99.100

3A=99.100.101

A=99.100.101:3

A=333300

21 tháng 5 2021

= -101/100

21 tháng 5 2021


\(B=-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{98.99}-\frac{1}{99.100}\\ =-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\\ =-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\\ =-\left(1-\frac{1}{100}\right)=\frac{-99}{100}\)

3 tháng 5 2017

A = \(\frac{1}{1}\)-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+... + \(\frac{1}{99}\)-\(\frac{1}{100}\)

A = \(\frac{1}{1}\)-\(\frac{1}{100}\)

ai tốt bụng thì tk cho mk nha, mk đg âm điểm đây 

A = \(\frac{99}{100}\)

3 tháng 5 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

5 tháng 6 2016

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

=\(1-\frac{1}{100}=\frac{99}{100}\)

5 tháng 6 2016

1*1/2+1/2*1/3+1/3*1/4+.........+1/99*1/100

5 tháng 3 2016

Mình đang bí đây nè

5 tháng 3 2016

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ............. + 1/99 - 1/100

= 1 - 1/100

= 99/100

9 tháng 6 2016

Ta có:

3S = 1.2.3 + 2.3.4 + 3.4.3 + ... + 99.100.3

3S = 1.2 ( 3 - 0 ) + 2.3. ( 4 - 1 ) + 3.4 . ( 5 - 2 )............... 99.100 . ( 101 - 98 )

3S = ( 1.2.3 + 2.3.4 + 3.4.5 + ... + 99.100.101 ) - ( 0.1.2 + 1.2.3 + 2.3.4 + ... + 98.99.100 )

3S = 99.100.101 - 0.1.2

3S = 999900 - 0

3S = 999900

S = 999900 : 3

S = 333300

9 tháng 6 2016

Gọi A là biểu thức ta có: 
A = 1.2+2.3+3.4+......+99.100 
Gấp A lên 3 lần ta có: 
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3 
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98) 
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100 
A . 3 = 99.100.101 
A = 99.100.101 : 3 
A = 33.100.101 
A = 333 300

28 tháng 5 2016

Co 3A= (3-0).1.2+(4-1).2.3+...+(101-98).99.100

3A= 1.2.3-0.1.2+2.3.4-1.2.3+...+101.99.100-98.99.100

3A=101.100.99

A=101.100.33

A=333300

14 tháng 9 2019

2.
a) (2x + 1)3 = 125
    (2x + 1)3 = 53
     2x + 1    = 5
     2x          = 5 - 1
     2x          = 4
       x          = 4:2
       x          = 2
Vậy x = 2
b) 5x+1 = 54
    x + 1 = 4
    x       = 4 - 1 
    x       = 3
Vây x = 3

14 tháng 9 2019

a) \(A=1.2+2.3+3.4+...+98.99+99.100\)

\(3A=1.2.3+2.3.4+3.4.3+...+99.100.3\) 

\(3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)....99.100.\left(101-98\right)\) 

\(3A=\left(1.2.3+2.3.4+3.4.5+...+99.100.101\right)-\left(0.1.2+1.2.3+2.3.4+...+98.99.100\right)\)

\(3A=99.100.101-0.1.2\) 

\(3A=999900-0\)

\(3A=999900\)

\(A=999900:3\)

\(\Rightarrow A=333300\)