K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)

b) \(x^2+16x+64=\left(x+8\right)^2\)

c) \(x^3-8y^3=x^3-\left(2y\right)^3\)

\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)

14 tháng 9 2020

\(A=x^3+y^3+3xy=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1+0=1\)

\(B=\left(x-y\right)^3+3xy\left(x-y\right)-3xy=1\)

\(c,M=a^2-ab+b^2+3ab\left(a^2+b^2\right)+6a^2b^2=3ab\left(a^2+2ab+b^2\right)+a^2-ab+b^2\)

\(=3ab+a^2-ab+b^2=\left(a+b\right)^2=1\)

\(x+y=2;x^2+y^2=10\text{ do đó:}xy=-3\text{ nên }\left(x-y\right)^2=16\text{ do đó: }x-y=4\text{ hoặc }x-y=-4\)

\(\text{giải ra được:}x=3;y=-1\text{ hoặc ngược lại nên }x^3+y^3=-26\text{ hoặc }26\)

14 tháng 9 2020

A = x3 + y3 + 3xy

= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 + 3xy

= ( x3 + 3x2 + 3xy2 + y3 ) - ( 3x2y + 3xy - 3xy )

= ( x + y )3 - 3xy( x + y - 1 )

= 13 - 3xy( 1 - 1 )

= 13 - 3xy.0

= 1 - 0 = 1

Vậy A = 1

b) B = x3 - y3 - 3xy

= x3 - 3x2y + 3xy2 - y3 + 3x2y - 3xy2 - 3xy

= ( x3 - 3x2y + 3xy2 - y3 ) + ( 3x2y - 3xy2 - 3xy )

= ( x - y )3 + 3xy( x - y - 1 )

= 13 + 3xy( 1 - 1 )

= 1 + 3xy.0

= 1 + 0 = 1

Vậy B = 1

M = a3 + b3 + 3ab( a2 + b2 ) + 6a2b2( a + b )

= ( a + b )( a2 - ab + b2 ) + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )

= ( a + b )[ ( a + b )2 - 3ab ] + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )

= 1.( 1 - 3ab ) + 3ab( 1 - 2ab ) + 6a2b2.1

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2

= 1

Vậy M = 1

d) x + y = 2

⇔ ( x + y )2 = 4

⇔ x2 + 2xy + y2 = 4

⇔ 10 + 2xy = 4 ( gt x2 + y2 = 10 )

⇔ 2xy = -6

⇔ xy = -3

x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2

            = ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )

            = ( x + y )3 - 3xy( x + y )

            = 23 - 3.(-3).(2)

            = 8 + 18 = 26

6 tháng 10 2019

a) Ta có: A = x3 + y3 + 3xy = (x + y)(x2 - xy + y2) + 3xy = 1. (x2 - xy + y2) + 3xy = x2 - xy + y2 + 3xy = x2 + 2xy + y2 = (x + y)2 = 12 = 1

b)Ta có: B = x3 - y3 - 3xy = (x - y)(x2 + xy + y2) - 3xy = 1. (x2 + xy + y2) - 3xy = x2 + xy + y2 - 3xy = x2 - 2xy + y2 = (x - y)2 = 12 = 1

d) Ta có : D = x3 + y3 + 3xy(x2 + y2) + 6x2y2(x + y)

=> D = (x + y)(x2 - xy + y2) + 3xy(x2 + 2xy + y2) -  6x2y2 + 6x2y2

=> D = x2 - xy + y2 + 3xy(x + y)2 

=> D = x2 - xy + y2 + 3xy.12

=> D = x2 + 2xy + y2

=> D = (x + y)2 = 12 = 1

6 tháng 10 2019

a) \(A=x^3+y^3+3xy\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=x^2-xy+y^2+3xy=x^2+2xy+y^2\)

\(=\left(x+y\right)^2=1^2=1\)

b) \(B=x^3-y^3-3xy\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=x^2+xy+y^2-3xy=x^2-2xy+y^2\)

\(=\left(x-y\right)^2=1^2=1\)

28 tháng 6 2018

bài 2 

Giải:x6+y6)-3(x4+y4)

 2(x6+y6)−3(x4+y4)2(x6+y6)−3(x4+y4)

⇔2(x2+y2)(x4−x2y2+y4)−3x4−3y4⇔2(x2+y2)(x4−x2y2+y4)−3x4−3y4

⇔2(x4−x2y2+y4)−3x4−3y4⇔2(x4−x2y2+y4)−3x4−3y4

⇔2x4−2x2y2+2y4−3x4−3y4⇔2x4−2x2y2+2y4−3x4−3y4

⇔−2x2y2−x4−y4⇔−2x2y2−x4−y4

⇔−(x4+2x2y2+y4)⇔−(x4+2x2y2+y4)

⇔−(x2+y2)2⇔−(x2+y2)2

⇔−1

28 tháng 6 2018

bài 1

bạn thay vào hết và tính ra là được 

\(\Leftrightarrow\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)

\(\Leftrightarrow3x^3+3y^3+3xy\left(x+y\right)-3x^3-3y^3-3xy\left(x+y\right)=0\)(điều phải c/m)

25 tháng 11 2016

1, mk nhớ k lầm thì mk  đã từng làm cho bn rồi ,kq=1/2

2,Dễ CM \(x^2+y^2+z^2\ge xy+yz+xz\) ,dấu "=" xảy ra <=>x=y=z

\(=>\left(x+y+z\right)^2\ge\left(xy+yz+xz\right)+2\left(xy+yz+xz\right)=3\left(xy+yz+xz\right)\)

\(=>9\ge3\left(xy+yz+xz\right)=>xy+yz+xz\le\frac{9}{3}=3\)

=>GTLN của xy+yz+xz=3

3)x3+y3+z3=3xyz

<=>x3+y3+z3-3xyz=0

<=>(x+y+z)(x2+y2+z2-xy-yz-xz)=0

<=>x+y+z=0 hoặc x2+y2+z2-xy-yz-xz=0

(+)x+y+z=0 thì x+y=-z;y+z=-x;x+z=-y

thế vô P =-1

(+)x2+y2+z2-xy-yz-xz=0

TH này thì x=y=z

thế vô P=2

19 tháng 8 2020

Bài 1: 

a) (x+y)2=92=81

=> x2+2xy+y2=81

=> x2+2.14+y2=81

=> x2+y2=53

=> x2-2xy+y2=81-2.14=25

=> (x-y)2=25

=> x-y=5 hoặc x-y=-5

b) Câu a đã tính được x2+y2=53

c) Ta có: x3+y3=(x+y)(x2-xy+y2)=9(53-14)=9.39=351

Bài 2: 

Ta có: \(x^2+2xy+y^2-4x-4y+1=\left(x+y\right)^2-4\left(x+y\right)+1\)

Mà x+y=1

\(\Rightarrow1^2-4.1+1=-2\)

Bài 3: 

Ta có: (x+y)3=x3+3x2y+3xy2+y3 

= x3+y3+3xy(x+y)

Mà x+y=1 => (x+y)3=x3+y3+3xy=13=1

Bài 4: 

Ta có: \(\left(x+y\right)^2=4^2=16\)

\(\Rightarrow x^2+2xy+y^2=16\Rightarrow10+2xy=16\)

\(\Rightarrow2xy=6\Rightarrow xy=3\)

Lại có: \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=4.\left(10-3\right)\)

\(=4.7=28\)

Bài 5: 

Ta có: \(x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=1\left(x^2+xy+y^2\right)-3xy=x^2+xy+y^2-3xy\)

\(=x^2-2xy+y^2=\left(x-y\right)^2=1\)

Mấy bài này đầu hè làm hết rồi:))

19 tháng 8 2020

Bài 1:

a) \(xy=14\Rightarrow x=\frac{14}{y}\)

Thay vào: \(\frac{14}{y}+y=9\)

\(\Leftrightarrow y^2+14-9y=0\)

\(\Leftrightarrow\left(y-2\right)\left(y-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=2\\y=7\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=2\end{cases}}\)

+ Nếu: \(\hept{\begin{cases}x=7\\y=2\end{cases}}\Rightarrow x-y=5\)

+ Nếu: \(\hept{\begin{cases}x=2\\y=7\end{cases}}\Rightarrow x-y=-5\)

b) Ta có: \(x+y=9\)

\(\Leftrightarrow\left(x+y\right)^2=81\)

\(\Leftrightarrow x^2+2xy+y^2=81\)

\(\Rightarrow x^2+y^2=81-2xy=81-2.14=53\)

c) Ta có: \(x+y=9\)

\(\Leftrightarrow\left(x+y\right)^3=9^3\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=729\)

\(\Leftrightarrow x^3+y^3=729-3xy\left(x+y\right)=729-3.14.9=351\)