K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2019

Có lẽ là làm như vầy ạ:

Ta thấy số hạng tổng quát của tổng có dạng \(\frac{1}{\sqrt{n}+\sqrt{n+1}}\) với n là số tự nhiên thỏa mãn: \(1< n< 2006\)

Ta có: \(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)(áp dụng hằng đẳng thức : a2 - b2 = (a-b)(a+b) vào cái mẫu)

Do vậy: \(S=\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{2005}+\sqrt{2006}}\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2005}-\sqrt{2004}+\sqrt{2006}-\sqrt{2005}\)

\(=-\sqrt{2}+\left(\sqrt{3}-\sqrt{3}\right)+...+\left(\sqrt{2005}-\sqrt{2005}\right)+\sqrt{2006}\) (gom hết các số hạng giống nhau bỏ vô ngoặc)

\(=\sqrt{2006}-\sqrt{2}\)

Vậy \(S=\sqrt{2006}-\sqrt{2}\)

12 tháng 5 2019

Bài lớp 9 này hơi quá trình độ lớp 7 của em (có gì sai sót xin thông cảm cho ạ)!

1 tháng 8 2015

\(VT=\frac{2\left(\sqrt{2}-\sqrt{1}\right)}{3.\left(2-1\right)}+\frac{2\left(\sqrt{3}-\sqrt{2}\right)}{5\left(3-2\right)}+...+\frac{2\left(\sqrt{2006}-\sqrt{2005}\right)}{4011\left(2006-2005\right)}\)

\(VT=\frac{2\left(\sqrt{2}-\sqrt{1}\right)}{3}+\frac{2\left(\sqrt{3}-\sqrt{2}\right)}{5}+...+\frac{2\left(\sqrt{2006}-\sqrt{2005}\right)}{4011}\)

Nhận xét: (a-b)2 \(\ge\) 0 => a2 + b2  \(\ge\) 2ab

Áp dụng ta có: \(3=\left(\sqrt{2}\right)^2+\left(\sqrt{1}\right)^2\ge2.\sqrt{2}.\sqrt{1}\)

\(5=\left(\sqrt{3}\right)^2+\left(\sqrt{2}\right)^2\ge2.\sqrt{3}.\sqrt{2}\)

...

\(4011=\left(\sqrt{2006}\right)^2+\left(\sqrt{2005}\right)^2\ge2.\sqrt{2006}.\sqrt{2005}\)

=> \(VT

22 tháng 11 2015

\(1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}=1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}+2\left(1.\frac{1}{n}-1.\frac{1}{n+1}-\frac{1}{n}.\frac{1}{n+1}\right)=\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2\); vì \(\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n\left(n+1\right)}=0\)

\(S=\left(1+\frac{1}{1}-\frac{1}{2}\right)+\left(1+\frac{1}{2}-\frac{1}{3}\right)+...+\left(1+\frac{1}{2005}-\frac{1}{2006}\right)\)

\(=2005+1-\frac{1}{2006}=2005\frac{2005}{2006}\)

19 tháng 8 2020

Ap dung cong thuc \(\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}=1+\frac{1}{a}-\frac{1}{a+1}\) 

ta co \(E=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2005}-\frac{1}{2006}=2004+\frac{1}{2}-\frac{1}{2006}\)

19 tháng 8 2020

Ta có: 

 \(E=\sqrt{\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{\left(-3\right)^2}}+\sqrt{\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{\left(-4\right)^2}}+...+\sqrt{\frac{1}{1^2}+\frac{1}{2005^2}+\frac{1}{\left(-2006\right)^2}}\)

DO:   \(1+2+\left(-3\right)=0;1+3+\left(-4\right)=0;...;1+2005+\left(-2006\right)=0\)

=> TA ĐƯỢC:    \(E=\sqrt{\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{-3}\right)^2}+\sqrt{\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{-4}\right)^2}+...+\sqrt{\left(\frac{1}{1}+\frac{1}{2005}+\frac{1}{-2006}\right)^2}\)

=>   \(E=\frac{1}{1}+\frac{1}{2}-\frac{1}{3}+\frac{1}{1}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1}+\frac{1}{2005}-\frac{1}{2006}\)

=>   \(E=\left(\frac{1}{1}+\frac{1}{1}+...+\frac{1}{1}\right)+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\right)\)

DO TRONG E CÓ TẤT CẢ 2004 CĂN THỨC

=>   \(E=2004+\frac{1}{2}-\frac{1}{2006}=2004+\frac{501}{1003}=\frac{2010513}{1003}\)