\(\left(\sqrt{1\dfrac{9}{16}}-\sqrt{\dfrac{9}{16}}\right):5\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2021

a,\(\left(\sqrt{1\dfrac{9}{16}}-\sqrt{\dfrac{9}{16}}\right):5=\left(\sqrt{\dfrac{25}{16}}-\dfrac{3}{4}\right):5=\left(\dfrac{5}{4}-\dfrac{3}{4}\right):5\)

\(=\dfrac{1}{2}:5=\dfrac{1}{10}\)

b,\(\left(\sqrt{3}-2\right)^2\left(\sqrt{3}+2\right)^2=\left[\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)\right]^2\)

\(=\left[3-4\right]^2=1\)

c,\(\left(11-4\sqrt{3}\right)\left(11+4\sqrt{3}\right)=11^2-\left(4\sqrt{3}\right)^2\)

\(=121-48=73\)

d,\(\left(\sqrt{2}-1\right)^2-\dfrac{3}{2}\sqrt{\left(-2\right)^2}+\dfrac{4\sqrt{2}}{5}+\sqrt{1\dfrac{11}{25}}.\sqrt{2}\)

\(=2-2\sqrt{2}+1-3+\dfrac{4\sqrt{2}}{5}+\sqrt{\dfrac{36}{25}.2}\)

\(=-2\sqrt{2}+\dfrac{4\sqrt{2}+6\sqrt{2}}{5}\)

\(=-2\sqrt{2}+\dfrac{10\sqrt{2}}{5}=-2\sqrt{2}+2\sqrt{2}=0\)

e,\(\left(1+\sqrt{2021}\right)\sqrt{2022-2\sqrt{2021}}\)

\(=\left(1+\sqrt{2021}\right)\sqrt{2021-2\sqrt{2021}.1+1}\)

\(=\left(1+\sqrt{2021}\right)\sqrt{\left(\sqrt{2021}-1\right)^2}\)

\(=\left(1+\sqrt{2021}\right)\left(\sqrt{2021}-1\right)\)

\(=\sqrt{2021}-1+\sqrt{2021^2}-\sqrt{2021}=2020\)

 

a: \(=\sqrt{5}+2+\sqrt{3}+1-\sqrt{5}-\sqrt{3}=3\)

b: \(=\left(-\sqrt{5}-2+\sqrt{5}-\sqrt{3}\right)\cdot\left(2\sqrt{3}+3\right)\)

\(=-\sqrt{3}\left(2+\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)\)

\(=-\sqrt{3}\left(7+4\sqrt{3}\right)=-7\sqrt{3}-12\)

c: \(=\dfrac{\sqrt{2}+\sqrt{3}+2}{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}=\dfrac{1}{1+\sqrt{2}}=\sqrt{2}-1\)

Rút gọn biểu thức: 1) \(\sqrt{12}+5\sqrt{3}-\sqrt{48}\) 2) \(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\) 3) \(2\sqrt{32}+4\sqrt{8}-5\sqrt{18}\) 4) \(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\) 5) \(\sqrt{12}+\sqrt{75}-\sqrt{27}\) 6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\) 7) \(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\) 8) \(\left(\sqrt{2}+2\right)\sqrt{2}-2\sqrt{2}\) 9) \(\dfrac{1}{\sqrt{5}-1}-\dfrac{1}{\sqrt{5}+}\) 10) \(\dfrac{1}{\sqrt{5}-2}+\dfrac{1}{\sqrt{5}+2}\) 11)...
Đọc tiếp

Rút gọn biểu thức:

1) \(\sqrt{12}+5\sqrt{3}-\sqrt{48}\)

2) \(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)

3) \(2\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)

4) \(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)

5) \(\sqrt{12}+\sqrt{75}-\sqrt{27}\)

6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)

7) \(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)

8) \(\left(\sqrt{2}+2\right)\sqrt{2}-2\sqrt{2}\)

9) \(\dfrac{1}{\sqrt{5}-1}-\dfrac{1}{\sqrt{5}+}\)

10) \(\dfrac{1}{\sqrt{5}-2}+\dfrac{1}{\sqrt{5}+2}\)

11) \(\dfrac{2}{4-3\sqrt{2}}-\dfrac{2}{4+3\sqrt{2}}\)

12) \(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}\)

13) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)

14) \(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}\)

15) \(\left(\sqrt{6}-\sqrt{5}\right)^2-\sqrt{120}\)

16) \(\left(2\sqrt{3}-3\sqrt{2}\right)^2+2\sqrt{6}+3\sqrt{24}\)

17) \(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}+3\right)^2}\)

18) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)

19) \(\sqrt{\left(\sqrt{5}-3\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)

20) \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)\)

4
3 tháng 1 2019

1) \(\sqrt{12}\)+\(5\sqrt{3}-\sqrt{48}\)
= \(2\sqrt{3}+5\sqrt{3}-4\sqrt{3}\)
= (2+5-4).\(\sqrt{3}\)
= \(3\sqrt{3}\)

2)\(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)
= \(5\sqrt{5}+2\sqrt{5}-3.3\sqrt{5}\)
= \(5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)
= \(\left(5+2-9\right).\sqrt{5}\)
= -2\(\sqrt{2}\)

3)\(3\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)
= \(3.4\sqrt{2}+4.2\sqrt{2}-5.3\sqrt{2} \)
= 12\(\sqrt{2}\) \(+8\sqrt{2}\) \(-15\sqrt{2}\)
= \(\left(12+8-15\right).\sqrt{2}\)
= \(5\sqrt{2}\)

4)\(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)
= \(3.2\sqrt{3}-4.3\sqrt{3}+5.4\sqrt{3}\)
= \(6\sqrt{3}-12\sqrt{3}+20\sqrt{3}\)
= \(\left(6-12+20\right).\sqrt{3}\)
= \(14\sqrt{3}\)

5)\(\sqrt{12}+\sqrt{75}-\sqrt{27}\)
= \(2\sqrt{3}+5\sqrt{3}-3\sqrt{3}\)
= \(\left(2+5-3\right).\sqrt{3}\)
= \(4\sqrt{3}\)

6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)
= \(2.3\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= 6\(\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= \(\left(6-7+9\right).\sqrt{2}\)
= 8\(\sqrt{2}\)

7)\(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)
= \(3.2\sqrt{5}-2.3\sqrt{5}+4\sqrt{5}\)
= \(6\sqrt{5}-6\sqrt{5}+4\sqrt{5}\)
= \(4\sqrt{5}\)

8)\(\left(\sqrt{2}+2\right).\sqrt{2}-2\sqrt{2}\)
= \(\left(\sqrt{2}\right)^2+2\sqrt{2}-2\sqrt{2}\)
= 2


4 tháng 1 2019
https://i.imgur.com/pmexRQv.jpg
25 tháng 7 2017

Hỏi đáp Toán

25 tháng 7 2017

Hỏi đáp Toán

24 tháng 8 2017

B1 :

a) \(\sqrt{1,2.270}=\sqrt{0,4.3.90.3}=3\sqrt{36}=3.6=18\)

\(\sqrt{55.77.35}=\sqrt{5.11.7.11.7.5}=\sqrt{25.49.212}=\sqrt{25}.\sqrt{49}.\sqrt{121}=5.7.11=385\)

b) \(\left(\sqrt{3}-\sqrt{2}\right)^2=3-2.\sqrt{3}.\sqrt{2}+2=5-2\sqrt{6}\)

\(\left(3\sqrt{2}-1\right)\left(3\sqrt{2}+1\right)=3\sqrt{2}.3\sqrt{2}+3\sqrt{2}-3\sqrt{2}-1=18-1\)

\(\left(\sqrt{6}+2\right)\left(\sqrt{3}-2\right)=\sqrt{6}.\sqrt{3}-2\sqrt{6}+2\sqrt{3}-4=\sqrt{18}-2\sqrt{6}+2\sqrt{3}-4\)\(=3\sqrt{2}-2\sqrt{6}+2\sqrt{3}-4\)

\(c,\left(\sqrt{\dfrac{3}{2}}-\sqrt{\dfrac{2}{3}}\right)=\dfrac{\sqrt{3}}{\sqrt{2}}-\dfrac{\sqrt{2}}{\sqrt{3}}=\dfrac{3-2}{\sqrt{2}\sqrt{3}}\) = \(\dfrac{1}{\sqrt{6}}\)

\(\left(\sqrt{\dfrac{8}{3}}-\sqrt{24}+\sqrt{\dfrac{50}{3}}\right).\sqrt{6}=\sqrt{\dfrac{8}{3}}.\sqrt{6}-\sqrt{24}.\sqrt{6}+\sqrt{\dfrac{50}{3}}.\sqrt{6}\) = \(\dfrac{\sqrt{8}.\sqrt{6}}{\sqrt{3}}-\sqrt{144}+\dfrac{\sqrt{50}.\sqrt{6}}{\sqrt{3}}=\dfrac{\sqrt{48}}{\sqrt{3}}-12+\dfrac{\sqrt{300}}{\sqrt{3}}=\sqrt{\dfrac{48}{3}}-12+\sqrt{\dfrac{300}{3}}=4-12+10=2\)

24 tháng 8 2017

B2 :

a) \(\sqrt{\dfrac{1}{8}}.\sqrt{2}.\sqrt{125}.\sqrt{\dfrac{1}{5}}=\sqrt{\dfrac{1}{8}.2.125.\dfrac{1}{5}}=\sqrt{\dfrac{25}{4}}=\dfrac{5}{2}\)

\(\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\sqrt{2+\sqrt{2}-\sqrt{2}-1}=1\)

b) \(\sqrt{\left(\sqrt{2}-3\right)^2}.\sqrt{11+6\sqrt{2}}=\left|\sqrt{2}-3\right|.\sqrt{2+6\sqrt{2}+9}=\left(\sqrt{2}-3\right).\sqrt{\left(\sqrt{2}+3\right)^2}=\left(\sqrt{2}-3\right)\)\(\left(\sqrt{2}+3\right)=2+3\sqrt{2}-3\sqrt{2}-9=-7\)

\(\sqrt{\left(\sqrt{3}-3\right)^2}.\sqrt{\dfrac{1}{3-\sqrt{3}}}=\left|\sqrt{3}-3\right|.\dfrac{1}{3-\sqrt{3}}=-\left(3-\sqrt{3}\right).\left(\dfrac{1}{3-\sqrt{3}}\right)=-1\)

14 tháng 11 2018

Đề không khó, mỗi tội dài

14 tháng 11 2018

vậy thì bn làm hộ mik vs , mik cần gấp

15 tháng 7 2017

a) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}=\sqrt{16}-6+\sqrt{20}-\sqrt{5}=4-6+2\sqrt{5}-\sqrt{5}=\sqrt{5}-2\)

b) \(0,2\sqrt{\left(-10\right)^3.3}+2\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}=0,2\left|-10\right|\sqrt{3}+2\left|\sqrt{3}-\sqrt{5}\right|=0,2.10.\sqrt{3}+2\left(\sqrt{5}-\sqrt{3}\right)=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}=2\sqrt{5}\)

c) \(\left(\dfrac{1}{2}\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}=\left(\dfrac{1}{2}\sqrt{\dfrac{2}{4}}-\dfrac{3}{2}\sqrt{2}+8\sqrt{2}\right):\dfrac{1}{8}=\left(\dfrac{1}{4}\sqrt{2}-\dfrac{2}{3}\sqrt{2}+8\sqrt{2}\right):\dfrac{1}{8}=\dfrac{27}{4}\sqrt{2}.8=54\sqrt{2}\)

d) \(2\sqrt{\left(\sqrt{2}-3\right)^2}+\sqrt{2.\left(-3\right)^2}-5\sqrt{\left(-1\right)^4}=2\left(3-\sqrt{2}\right)+3\sqrt{2}-5=6-2\sqrt{2}+3\sqrt{2}-5=1+\sqrt{2}\)

16 tháng 12 2022

a: \(=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=12\sqrt{2x}\)

b: \(=6-4\sqrt{3}+4\sqrt{3}-8=-2\)

c: \(=\sqrt{2}+1+2-\sqrt{2}=3\)

d: \(=\dfrac{1}{\sqrt{2}}\cdot\left(\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}+2\sqrt{3}\right)=0\)

f: \(=\sqrt{2}-8\sqrt{6}-\sqrt{2}+2\sqrt{6}=-6\sqrt{6}\)

16 tháng 10 2022

b: \(=\left(\sqrt{ab}+\dfrac{2\sqrt{ab}}{a}-\sqrt{\dfrac{a^2+1}{ab}}\right)\cdot\sqrt{ab}\)

\(=ab+\dfrac{2ab}{a}-\sqrt{a^2+1}=ab+2b-\sqrt{a^2+1}\)

c: \(=2\sqrt{6b}-6\sqrt{18}+10\sqrt{12}-\sqrt{48}\)

\(=2\sqrt{6b}-18\sqrt{2}+20\sqrt{3}-4\sqrt{3}\)

\(=2\sqrt{6n}-18\sqrt{2}+16\sqrt{3}\)

d: \(=\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\dfrac{\sqrt{21}}{7}\)