Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+2+3+4+5+...+50
A=(50+1)+(49+2)+(48+3)+...
A=(50+1)*[(50-1):1+1]:2
A=51*25=1275
B=2+4+6+8+10+...+100
B=(100+2)+(98+4)+(96+6)+...
B=(100+2)*[(100-2):2+1]:2
B=102*25=2550
C=1+4+7+10+13+...+99
C=(99+1)+(96+4)+(93+7)+...
C=(99+1)*[(99-1):3+1]:2
C=100*16.8333=1683.33
D=2+5+8+11+14+...+98
D=(98+2)+(95+5)+(92+8)+...
D=(98+2)*[(98-2):3+1]:2
D=100*16.5=1650
E=1+2+3+4+5+...+25
E=(25+1)+(24+2)+(23+3)+...
E=(25+1)*[(25-1):1+1]:2
E=26*12.5=325
F=2+4+6+8+10+...+50
F=(50+2)+(48+4)+(46+6)+...
F=(50+2)*[(50-2):2+1]:2
F=52*12.5=650
G=3+5+7+9+11+...+51
G=(51+3)+(49+5)+(47+7)+...
G=(51+3)*[(51-3):2+1]:2
G=54*12.5=675
H=1+5+9+13+17+...+81
H=(81+1)+(77+5)+(73+9)+...
H=(81+1)*[(81-1):4+1]:2
H=82*10.5=861
a) A =1 + 2 + 3 + 4 + … + 50
Số số hạng của dãy số trên là:
(50 - 1) : 1 + 1 = 50 (số số hạng)
A =(1+ 50) . 50 : 2
= 51 . 50 : 2
= 2550 : 2
= 1275
b) B = 2 + 4 + 6 + 8 + ... + 100
Số số hạng của dãy số trên là:
(100 - 2) : 2 + 1 = 50 (số hạng)
Có số cặp là:
50 : 2 = 25 (cặp)
Tổng của 1 cặp là:
100 + 2 = 102
Tổng của dãy số là:
25 .102 = 2550
c) C = 1 + 3 + 5 + 7 + … + 99
Số số hạng của dãy trên là:
(99 - 1) : 2 + 1 = 50 (số số hạng)
C = (1 + 99) . 50 : 2
= 100 . 50 : 2
= 5000 : 2
= 2500
d) D = 2 + 5 + 8 + 11 + … + 98
Số số hạng của dãy trên là:
(98 - 2) : 3 + 1 = 33 (số số hạng)
=> Dãy trên có 16 cặp
D = (95 + 2) .16 + 98
= 97 . 16 + 98
= 1552 +98
= 1650
A = 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 +....+ 99 - 100
A = (1 - 2) + ( 3- 4) + ....+ (99 - 100)
Xét dãy số 1; 3;...; 99
Dãy số trên là dãy số cách đều với khoảng cách là: 3 - 1 = 2
Số số hạng của dãy số trên là: ( 99 - 1): 2 + 1 = 50
A là tổng của 50 nhóm mỗi nhóm cóa giá tri là: 1 - 2 = - 1
A = - 1 \(\times\) 50 = - 50
B = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 +...+ 97 - 98 - 99 + 100
B = ( 1 - 2 - 3 + 4) + ( 5 - 6 - 7 + 8) +...+ ( 97 - 98 - 99 + 100)
B = 0 + 0 +...+ 0
B = 0
a: từ 1 đến 100 sẽ có \(\dfrac{100-1}{1}+1=100-1+1=100\left(số\right)\)
=>Sẽ có \(\dfrac{100}{2}=50\) cặp số
1-2+3-4+...+99-100
=(1-2)+(3-4)+...+(99-100)
=(-1)+(-1)+...+(-1)
=-1*50=-50
b: Sửa đề: \(2-4+6-8+...+46-48+50\)
Từ 2 đến 48 sẽ có \(\dfrac{48-2}{2}+1=24-1+1=24\left(số\right)\)
=>Sẽ có \(\dfrac{24}{2}=12\left(cặp\right)\)
\(2-4+6-8+...+46-48+50\)
\(=\left(2-4\right)+\left(6-8\right)+...+\left(46-48\right)+50\)
\(=\left(-2\right)+\left(-2\right)+...+\left(-2\right)+50\)
\(=50-2\cdot24=50-48=2\)
c: Đặt A=\(1+2-3+4+...+97+98-99+100\)
\(=\left(1+2-3+4\right)+\left(5+6-7+8\right)+...+\left(97+98-99+100\right)\)
\(=4+12+...+196\)
Từ 4 đến 196 sẽ có \(\dfrac{196-4}{8}+1=\dfrac{192}{8}+1=25\left(số\right)\)
Tổng của dãy A là: \(\left(196+4\right)\cdot\dfrac{25}{2}=\dfrac{25}{2}\cdot200=100\cdot25=2500\)
a: 1-2+3-4+...+99-100
=(1-2)+(3-4)+...+(99-100)
=(-1)+(-1)+...+(-1)
=-1*50=-50
c: 1+2-3-4+....+97+98-99-100
=(1+2-3-4)+(5+6-7-8)+...+(97+98-99-100)
=(-4)+(-4)+...+(-4)
=(-4)*25=-100
4:
a: =4/15-2,9+11/15=1-2,9=-1,9
b: \(=-36,75+3,7-63,25+6,3=10-100=-90\)
c: \(=6,5+3,5-\dfrac{10}{17}-\dfrac{7}{17}=10-1=9\)
d: \(=\dfrac{13}{25}\left(-39,1-60,9\right)=\dfrac{13}{25}\left(-100\right)=-52\)
e: =-5/12-7/12-3,7-6,3=-1-10=-11
f: =2,8(-6/13-7/13)-7,2=-2,8-7,2=-10
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
\(a,\dfrac{1}{3}-\left(-1\dfrac{2}{5}\right)+\left(-3\dfrac{1}{4}\right)\\ =\dfrac{1}{3}-\left(-\dfrac{7}{5}\right)-\dfrac{13}{4}\\ =\dfrac{1}{3}+\dfrac{7}{5}-\dfrac{13}{4}\\ =\dfrac{20}{3\times20}+\dfrac{7\times12}{5\times12}-\dfrac{13\times15}{4\times15}\\ =\dfrac{20+84-195}{60}\\ =\dfrac{-91}{60}\)
\(b,\dfrac{5}{4}-\left(-3\dfrac{1}{2}\right)-\dfrac{7}{10}\\ =\dfrac{5}{4}+\dfrac{7}{2}-\dfrac{7}{10}\\ =\dfrac{5\times5}{4\times5}+\dfrac{7\times10}{2\times10}-\dfrac{7\times2}{10\times2}\\ =\dfrac{25+70-14}{20}\\ =\dfrac{81}{20}\)
\(c,\dfrac{3}{2}-\left[\left(-\dfrac{4}{7}-\left(\dfrac{1}{2}+\dfrac{5}{8}\right)\right)\right]\\ =\dfrac{3}{2}-\left[-\dfrac{4}{7}-\left(\dfrac{4}{8}+\dfrac{5}{8}\right)\right]\\ =\dfrac{3}{2}-\left(-\dfrac{4}{7}-\dfrac{9}{8}\right)\\ =\dfrac{3}{2}+\dfrac{4}{7}+\dfrac{9}{8}\\ =\dfrac{3\times28}{2\times28}+\dfrac{4\times8}{8\times7}+\dfrac{9\times7}{8\times7}\\ =\dfrac{84+32+63}{56}\\ =\dfrac{179}{56}\)
`@` `\text {Ans}`
`\downarrow`
`a,`
\(\dfrac{1}{3}-\left(-1\dfrac{2}{5}\right)+\left(-3\dfrac{1}{4}\right)\)
`= 1/3+7/5 - 13/4`
`= 26/15 - 13/4`
`= -91/60`
`b,`
\(\dfrac{5}{4}-\left(-3\dfrac{1}{2}\right)-\dfrac{7}{10}\)
`= 5/4+7/2 - 7/10`
`= 1,25 + 3,5 - 0,7`
`= 4,75 - 0,7`
`= 4,05`
`c,`
\(\dfrac{3}{2}-\left[\left(-\dfrac{4}{7}\right)-\left(\dfrac{1}{2}+\dfrac{5}{8}\right)\right]\)
`= 3/2 - [(-4/7) - 9/8]`
`= 3/2 - (-95/56)`
`= 179/56`
a) \(A=\left\{1;2;3;4;5\right\}\)
\(\Rightarrow A=\left\{x\inℕ|1\le x\le5\right\}\)
b) \(B=\left\{0;1;2;3;4\right\}\)
\(\Rightarrow B=\left\{x\inℕ|0\le x\le4\right\}\)
c) \(C=\left\{1;2;3;4\right\}\)
\(\Rightarrow C=\left\{x\inℕ|1\le x\le4\right\}\)
d) \(D=\left\{0;2;4;6;8\right\}\)
\(\Rightarrow D=\left\{x\inℕ|x=2k;0\le k\le4;k\inℕ\right\}\)
e) \(E=\left\{1;3;5;7;9;...49\right\}\)
\(\Rightarrow E=\left\{x\inℕ|x=2k+1;0\le k\le24;k\inℕ\right\}\)
f) \(F=\left\{11;22;33;44;...99\right\}\)
\(\Rightarrow F=\left\{x\inℕ|x=11k;1\le k\le9;k\inℕ\right\}\)
Ta có : E = 22 + 24 + 26 + ...... + 2100
=> 22E = 24 + 26 + 28 + ........ + 2102
=> 4E = 2102 - 22
=> E = \(\frac{2^{102}-4}{4}\)