\(\dfrac{\sqrt{9+\sqrt{5}}+\sqrt{9-\sqrt{5}}}{\sqrt{9+ 2\sqrt{19}}}-\sqrt{3-2\sq...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2023

Đặt \(B=\sqrt{9+\sqrt{5}}+\sqrt{9-\sqrt{5}}\)

=>\(B^2=9+\sqrt{5}+9-\sqrt{5}+2\cdot\sqrt{81-5}\)

=>\(B^2=18+2\sqrt{76}\)

=>\(B=\sqrt{18+2\sqrt{76}}\)

\(\Leftrightarrow A=\sqrt{\dfrac{18+2\sqrt{76}}{9+2\sqrt{19}}}-\sqrt{3-2\sqrt{2}}\)

\(=\sqrt{\dfrac{2\left(9+2\sqrt{19}\right)}{9+2\sqrt{19}}}-\sqrt{2}+1=\sqrt{2}-\sqrt{2}+1=1\)

Bài 1: Tính

a) Ta có: \(\left(\sqrt{3}+2\right)^2\)

\(=\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot2+2^2\)

\(=3+4\sqrt{3}+4\)

\(=7+4\sqrt{3}\)

b) Ta có: \(-\left(\sqrt{2}-1\right)^2\)

\(=-\left[\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot1+1^2\right]\)

\(=-\left(2-2\sqrt{2}+1\right)\)

\(=-\left(3-2\sqrt{2}\right)\)

\(=2\sqrt{2}-3\)

Bài 2: Tính

a) Ta có: \(0.5\cdot\sqrt{100}-\sqrt{\frac{25}{4}}\)

\(=\frac{1}{2}\cdot10-\frac{5}{2}\)

\(=5-\frac{5}{2}\)

\(=\frac{5}{2}\)

b) Ta có: \(\left(\sqrt{1\frac{9}{16}}-\sqrt{\frac{9}{16}}\right):5\)

\(=\left(\sqrt{\frac{25}{16}}-\frac{3}{4}\right)\cdot\frac{1}{5}\)

\(=\left(\frac{5}{4}-\frac{3}{4}\right)\cdot\frac{1}{5}\)

\(=\frac{2}{4}\cdot\frac{1}{5}\)

\(=\frac{1}{10}\)

Bài 3: So sánh

a) Ta có: \(3\sqrt{2}=\sqrt{3^2\cdot2}=\sqrt{18}\)

\(2\sqrt{3}=\sqrt{2^2\cdot3}=\sqrt{12}\)

\(\sqrt{18}>\sqrt{12}\)(Vì 18>12)

nên \(3\sqrt{2}>2\sqrt{3}\)

\(\Leftrightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

b) Ta có: \(\left(15-2\sqrt{10}\right)^2\)

\(=225-2\cdot15\cdot2\sqrt{10}+\left(2\sqrt{10}\right)^2\)

\(=225-60\sqrt{10}+40\)

\(=265-60\sqrt{10}\)

\(=135+130-60\sqrt{10}\)

Ta có: \(\left(3\sqrt{15}\right)^2=3^2\cdot\left(\sqrt{15}\right)^2=9\cdot15=135\)

Ta có: \(130-60\sqrt{10}\)

\(=\sqrt{16900}-\sqrt{36000}< 0\)(Vì 16900<36000)

\(\Leftrightarrow130-60\sqrt{10}+135< 135\)(cộng hai vế của BĐT cho 135)

\(\Leftrightarrow\left(15-2\sqrt{10}\right)^2< \left(3\sqrt{15}\right)^2\)

\(\Leftrightarrow15-2\sqrt{10}< 3\sqrt{15}\)

\(\Leftrightarrow\frac{15-2\sqrt{10}}{3}< \frac{3\sqrt{15}}{3}=\sqrt{15}\)

hay \(\frac{15-2\sqrt{10}}{3}< \sqrt{15}\)

9 tháng 9 2020

phần a của 3 bài đều easy mà cả 3 bài đều easy

b: \(=\dfrac{\sqrt{5}+1}{\sqrt{5}-1}+\dfrac{\sqrt{5}-1}{\sqrt{5}+1}\)

\(=\dfrac{6+2\sqrt{5}+6-2\sqrt{5}}{4}=\dfrac{12}{4}=3\)

c: \(=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)

\(=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\)

e: \(=\dfrac{2\sqrt{3+\sqrt{5-2\sqrt{3}-1}}}{\sqrt{6}-\sqrt{2}}\)

\(=\dfrac{\sqrt{2}\cdot\sqrt{3+\sqrt{3}-1}}{\sqrt{3}-1}=\dfrac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}-1}=\dfrac{\sqrt{3}+1}{\sqrt{3}-1}\)

\(=\dfrac{4-2\sqrt{3}}{2}=2-\sqrt{3}\)

12 tháng 8 2017

TFBoys giúp em với =((

AH
Akai Haruma
Giáo viên
6 tháng 10 2019

a)

\((4+\sqrt{15})(\sqrt{10}-\sqrt{6})\sqrt{4-\sqrt{15}}=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}\)

\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{3+5-2\sqrt{3.5}}\)

\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)

\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})^2=(4+\sqrt{15})(8-2\sqrt{15})=2(4+\sqrt{15})(4-\sqrt{15})\)

\(=2(4^2-15)=2\)

b)

\(\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}=\sqrt{(8+2\sqrt{15})+2+2(\sqrt{6}+\sqrt{10})}\)

\(=\sqrt{(\sqrt{5}+\sqrt{3})^2+2\sqrt{2}(\sqrt{3}+\sqrt{5})+2}\)

\(=\sqrt{(\sqrt{5}+\sqrt{3}+\sqrt{2})^2}=\sqrt{5}+\sqrt{3}+\sqrt{2}\)

AH
Akai Haruma
Giáo viên
6 tháng 10 2019

c)

\((\sqrt{5+2\sqrt{9\sqrt{5}-19}}-\sqrt{7-\sqrt{5}}):(2\sqrt{\sqrt{5}-2})\)

\(=(\sqrt{(5+2\sqrt{9\sqrt{5}-19})(\sqrt{5}+2)}-\sqrt{(7-\sqrt{5})(\sqrt{5}+2)}):(2\sqrt{(\sqrt{5}-2)(\sqrt{5}+2)})\)

\(=[\sqrt{10+5\sqrt{5}+2\sqrt{(9\sqrt{5}-19)(9+4\sqrt{5})}}-\sqrt{9+5\sqrt{5}}]:2\)

\(=[\sqrt{10+5\sqrt{5}+2\sqrt{9+5\sqrt{5}}}-\sqrt{9+5\sqrt{5}}]:2\)

\(=[\sqrt{(9+5\sqrt{5})+2\sqrt{9+5\sqrt{5}}+1}-\sqrt{9+5\sqrt{5}}]:2\)

\(=[\sqrt{(\sqrt{9+5\sqrt{5}}+1)^2}-\sqrt{9+5\sqrt{5}}]:2\)

\(=[\sqrt{9+5\sqrt{5}}+1-\sqrt{9+5\sqrt{5}}]:2=\frac{1}{2}\)

d)

\((\sqrt{9+\sqrt{5}}+\sqrt{9-\sqrt{5}})^2=18+2\sqrt{(9+\sqrt{5})(9-\sqrt{5})}=18+4\sqrt{19}\)

\(\Rightarrow \sqrt{9+\sqrt{5}}+\sqrt{9-\sqrt{5}}=\sqrt{18+4\sqrt{19}}\)

Do đó:
\(\frac{\sqrt{9+\sqrt{5}}+\sqrt{9-\sqrt{5}}}{\sqrt{9+2\sqrt{19}}}-\sqrt{3-2\sqrt{2}}=\frac{\sqrt{18+4\sqrt{19}}}{\sqrt{9+2\sqrt{19}}}-\sqrt{2+1-2\sqrt{2.1}}\)

\(=\frac{\sqrt{2}.\sqrt{9+2\sqrt{19}}}{\sqrt{9+2\sqrt{19}}}-\sqrt{(\sqrt{2}-1)^2}=\sqrt{2}-(\sqrt{2}-1)=1\)

a: \(=\sqrt{5}+2+\sqrt{3}+1-\sqrt{5}-\sqrt{3}=3\)

b: \(=\left(-\sqrt{5}-2+\sqrt{5}-\sqrt{3}\right)\cdot\left(2\sqrt{3}+3\right)\)

\(=-\sqrt{3}\left(2+\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)\)

\(=-\sqrt{3}\left(7+4\sqrt{3}\right)=-7\sqrt{3}-12\)

c: \(=\dfrac{\sqrt{2}+\sqrt{3}+2}{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}=\dfrac{1}{1+\sqrt{2}}=\sqrt{2}-1\)

26 tháng 7 2018

\(a,2\sqrt{\dfrac{27}{4}}-\sqrt{\dfrac{48}{9}}-\dfrac{2}{5}.\sqrt{\dfrac{75}{16}}\)

\(\Leftrightarrow2.\dfrac{\sqrt{27}}{2}-\sqrt{\dfrac{48}{3}}-\dfrac{2}{5}.\dfrac{\sqrt{75}}{4}\)

\(\Leftrightarrow\sqrt{27}-\dfrac{4\sqrt{3}}{3}-\dfrac{1}{5}.\dfrac{5\sqrt{3}}{2}\)

\(\Leftrightarrow3\sqrt{3}-\dfrac{4\sqrt{3}}{3}-\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow\dfrac{7\sqrt{3}}{6}\)

26 tháng 7 2018

\(b,\left(1+\dfrac{5-\sqrt{5}}{1-\sqrt{5}}\right).\left(\dfrac{5+\sqrt{5}}{1+\sqrt{5}}+1\right)\)

\(\Leftrightarrow\)\(\left[1+\dfrac{\left(5-\sqrt{5}\right)\left(1+\sqrt{5}\right)}{-4}\right].\left[\dfrac{\left(5+\sqrt{5}\right).\left(1-\sqrt{5}\right)}{-4}+1\right]\)

\(\Leftrightarrow\)\(\left(1+\dfrac{5+5\sqrt{5}-\sqrt{5}-5}{-4}\right).\left(\dfrac{5-5\sqrt{5}+\sqrt{5}-5}{-4}+1\right)\)

\(\Leftrightarrow\)\(\left(1+\dfrac{4\sqrt{5}}{-4}\right)\left(\dfrac{-4\sqrt{5}}{-4}+1\right)\)

\(\Leftrightarrow\left(1-\sqrt{5}\right)\left(\sqrt{5}+1\right)\)

\(\Leftrightarrow\left(1-\sqrt{5}\right).\left(1+\sqrt{5}\right)\)

<=> 1-5

=-4

19 tháng 9 2018

giúp tớ với ^.^

19 tháng 9 2018

Góp ý chút. Cậu đăng tầm hai câu nhỏ một bài sẽ có nhiều người làm hơn đó.

11 tháng 7 2018

sao m ngu thế