\(A=1+3+3^2+3^3+...3^{999}\)

b) \(B=1+5+5^2+5^3...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2020

p/s: tại olm ko dùng font latex khi trl trên hỏi đáp nhỉ?

26 tháng 10 2020

A = 1 + 3 + 32 + 33 + ... + 3999

⇔ 3A = 3( 1 + 3 + 32 + 33 + ... + 3999 )

⇔ 3A = 3 + 32 + 33 + ... + 31000

⇔ 3A - A = 2A

= 3 + 32 + 33 + ... + 31000 - ( 1 + 3 + 32 + 33 + ... + 3999 )

= 3 + 32 + 33 + ... + 31000 - 1 - 3 - 32 - 33 - ... - 3999 

= 31000 - 1

⇔ A = \(\frac{3^{1000}-1}{2}\)

B = 1 + 5 + 52 + 53 + ... + 599

⇔ 5B = 5( 1 + 5 + 52 + 53 + ... + 599 )

⇔ 5B = 5 + 52 + 53 + ... + 5100

⇔ 5B - B = 4B

= 5 + 52 + 53 + ... + 5100 - ( 1 + 5 + 52 + 53 + ... + 599 )

= 5 + 52 + 53 + ... + 5100 - 1 - 5 - 52 - 53 - ... - 599 

= 5100 - 1

⇔ B = \(\frac{5^{100}-1}{4}\)

15 tháng 7 2019

\(a,A=1^2+3^2+5^2+...+99^2\)

\(A=1+2^2+3^2+4^2+5^2+...+99^2\)

\(A=1+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)

\(A=\left(2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)

\(A=\frac{99.100.101}{3}-\frac{99.\left(99+1\right)}{2}\)

\(A=333300-4950=328350\)

11 tháng 10 2017

ta có A= \(\frac{8^{18}+1}{8^{19} +1}\)=> 8A=\(\frac{8^{19}+8}{8^{19}+1}\)\(\frac{\left(8^{19}+1\right)+7}{8^{19}+1}\)=\(\frac{8^{19}+1}{8^{19} +1}\)+\(\frac{7}{8^{19}+1}\) =1+\(\frac{7}{8^{19}+1}\) =\(\frac{7}{8^{19}+1}\) 

         B= \(\frac{8^{23}+1}{8^{24}+1}\)=> 8B=\(\frac{8^{24}+8}{8^{24}+1}\)\(\frac{\left(8^{24}+1\right)+7}{8^{24}+1}\)=\(\frac{8^{24}+1}{8^{24}+1}\)+\(\frac{7}{8^{24}+1}\) =1+\(\frac{7}{8^{24} +1}\)=\(\frac{7}{8^{24}+1}\)

       vì  \(8^{19}\)<\(8^{24}\)=> \(8^{19}\)+1 >\(8^{24}\)+1 => \(\frac{7}{8^{19}+1}\)<\(\frac{7}{8^{24}+1}\)=> A<B

a) ta có \(8A=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\\ 8B=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)

Vì \(8^{24}+1>8^{19}+1\\\frac{7}{8^{24}+1}< \frac{7}{8^{19}+1} \)

vậy 8A>8B nên A>B

9 tháng 8 2016

a) 5A = 5 + 5^2 + 5^3 + 5^4 +...+ 5^51

=> 5A - A = 4A = 5^51 - 1

=> A = \(\frac{5^{51}-1}{4}\)

b) 3B = 3^100 - 3^99 -...- 3

=> 3B - B = 2B = 3^100 - 2.3^99 + 1

=> B = \(\frac{3^{100}-2\times3^{99}+1}{2}\)

9 tháng 8 2016

a, 1+5+52+.....+550

=> 5(1+5+52+.....+550)=5+52+53.....+551

=>4(1+5+52+.....+550)=551-1

=>1+5+52+.....+550=(551-1):4

b,399-398-...-3-1

=399-(398+...+3+1)

=399-(399-1):2

9 tháng 7 2017

a, A = \(\frac{1}{2}.\frac{3}{4}.\frac{4}{5}...\frac{99}{100}\)

\(A=\frac{1}{2}.\left(\frac{3.4....99}{4.5...100}\right)\)
\(A=\frac{1}{2}.\left(\frac{3}{100}\right)\)\(\)\(A=\frac{3}{200}\)

\(B=\frac{2}{3}.\frac{4}{5}.\frac{5}{6}...\frac{100}{101}\)

\(B=\frac{2}{3}.\left(\frac{4.5...100}{5.6...101}\right)\)

\(B=\frac{2}{3}.\left(\frac{4}{101}\right)\)

\(B=\frac{8}{303}\)

\(A.B=\frac{8}{303}.\frac{3}{200}\)

\(A.B=\frac{1}{2525}\)

b, A = 1/2 x 3/100

B = 2/3 x 4/101

Ta có : 1 - 2/3 = 1/3; 1 - 1/2 = 1/2

MÀ 1/3 < 1/2 => 2/3 > 1/2 (1)

Ta có : 1 - 3/100 = 97/100

1 - 4/101 = 97/101

Mà 97/101 < 97/100 => 4/101 > 3/100 (2)

Từ (1) và (2) => B > A

9 tháng 7 2017

a,

\(AB=\left[\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right]\cdot\left[\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\right]\)

\(AB=\frac{\left[1\cdot3\cdot5\cdot...\cdot99\right]\left[2\cdot4\cdot6\cdot...\cdot100\right]}{\left[2\cdot4\cdot6\cdot8\cdot...\cdot100\right]\left[3\cdot5\cdot7\cdot...\cdot101\right]}=\frac{1\cdot3\cdot5\cdot...\cdot99}{3\cdot5\cdot7\cdot...\cdot101}=\frac{1}{101}\)

b,

1/2 < 2/3

3/4 < 4/5

.............

99/100 < 100/101

=> \(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}< \frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\Leftrightarrow A< B\)

2 tháng 2 2019

iúp mình vs help me >3

3 tháng 2 2019

mk làm rùi nên mn k cần giúp nx đâu.Hihi

17 tháng 6 2018

a, \(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\\ 3B=3+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2003}}+\dfrac{1}{3^{2004}}\\ 3B-B=\left(3+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2003}}+\dfrac{1}{3^{2004}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\right)\\2B=3-\dfrac{1}{3^{2005}}\\ B=\dfrac{3-\dfrac{1}{3^{2005}}}{2}\)

b,

\(A=1+5+5^2+5^3+...+5^{49}+5^{50}\\ 5A=5+5^2+5^3+5^4+...+5^{50}+5^{51}\\ 5A-A=\left(5+5^2+5^3+5^4+...+5^{50}+5^{51}\right)-\left(1+5+5^2+5^3+...+5^{49}+5^{50}\right)\\ 4A=5^{51}-1\\ A=\dfrac{5^{51}-1}{4}\)

c,

\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2-1}\right)......\left(\dfrac{1}{100^2-1}\right)\\ A=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{16}-1\right)......\left(\dfrac{1}{10000}-1\right)\\ A=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\cdot\cdot\cdot\dfrac{9999}{10000}\\ A=\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot\cdot\cdot\cdot\dfrac{99\cdot101}{100\cdot100}\\ A=\dfrac{1\cdot2\cdot3\cdot\cdot\cdot\cdot99}{2\cdot3\cdot4\cdot\cdot\cdot\cdot100}\cdot\dfrac{3\cdot4\cdot5\cdot\cdot\cdot\cdot101}{2\cdot3\cdot4\cdot\cdot\cdot\cdot100}\\ A=\dfrac{1}{100}\cdot\dfrac{101}{2}\\ A=\dfrac{101}{200}\)

17 tháng 6 2018

d,

\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\\ A=\left(2^{100}+2^{98}+...+2^2\right)-\left(2^{99}+2^{97}+...+2^1\right)\)

Đặt \(A=B-C\)

\(\Rightarrow B=\left(2^{100}+2^{98}+...+2^2\right)vàC=\left(2^{99}+2^{97}+...+2^1\right)\)

\(B=2^{100}+2^{98}+...+2^2\\ 4B=2^{102}+2^{100}+...+2^4\\ 4B-B=\left(2^{102}+2^{100}+...+2^4\right)-\left(2^{100}+2^{98}+...+2^2\right)\\ 3B=2^{102}-2^2\\ B=\dfrac{2^{102}-2^2}{3}\left(1\right)\)

\(C=2^{99}+2^{97}+...+2^1\\ 4C=2^{101}+2^{99}+...+2^3\\ 4C-C=\left(2^{101}+2^{99}+...+2^3\right)-\left(2^{99}+2^{97}+...+2\right)\\ 3C=2^{101}-2\\ C=\dfrac{2^{101}-2}{3}\left(2\right)\)

Từ (1) và (2) ta có :

\(A=\dfrac{2^{102}-2^2}{3}-\dfrac{2^{101}-2}{3}\\ A=\dfrac{2^{102}-2^2-2^{101}+2}{3}\\ A=\dfrac{2^{102}-2^{101}+2}{3}\)