K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2017

\(F=\dfrac{49}{2.9}+\dfrac{49}{9.16}+............+\dfrac{49}{65.72}\)

\(\Leftrightarrow F=\dfrac{7^2}{2.9}+\dfrac{7^2}{9.16}+............+\dfrac{7^2}{65.72}\)

\(\Leftrightarrow F=7\left(\dfrac{7}{2.9}+\dfrac{7}{9.16}+.............+\dfrac{7}{65.72}\right)\)

\(\Leftrightarrow F=7\left(\dfrac{1}{2}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...........+\dfrac{1}{65}-\dfrac{1}{75}\right)\)

\(\Leftrightarrow F=7\left(\dfrac{1}{2}-\dfrac{1}{72}\right)\)

\(\Leftrightarrow F=7.\dfrac{35}{72}=\dfrac{245}{72}\)

\(G=\dfrac{3}{1.3}+\dfrac{3}{3.5}+...........+\dfrac{3}{47.49}\)

\(\Leftrightarrow G=\dfrac{3.2}{1.3.2}+\dfrac{3.2}{3.5.2}+........+\dfrac{3.2}{47.49}\)

\(\Leftrightarrow G=\dfrac{3}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+..........+\dfrac{2}{47.49}\right)\)

\(\Leftrightarrow G=\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+........+\dfrac{1}{47}-\dfrac{1}{49}\right)\)

\(\Leftrightarrow G=\dfrac{3}{2}\left(1-\dfrac{1}{49}\right)\)

\(\Leftrightarrow G=\dfrac{3}{2}.\dfrac{48}{49}=\dfrac{72}{49}\)

23 tháng 3 2022

 = \(\dfrac{5}{2}(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2019}-\dfrac{1}{2021})\)

 = \(\dfrac{5}{2}\left(1-\dfrac{1}{101}\right)\)

 = \(\dfrac{5}{2}.\dfrac{100}{101}\)

 = \(\dfrac{250}{101}\)

 

25 tháng 4 2017

B =\(\frac{3}{1.3}+\frac{3}{3.5}+...+\frac{3}{99.101}\)

\(=\frac{3}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)

\(=\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{3}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{3}{2}.\frac{100}{101}\)

\(=\frac{300}{202}\)

25 tháng 4 2017

bài này quá dễ

16 tháng 3 2017

mk có 3 cáh mn xem cáh nào hen

\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-......+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{3}{2}\left(1-\frac{1}{101}\right)\)

\(=\frac{100}{101}.\frac{3}{2}=\frac{105}{101}\)

c2 nhé

\(A=3\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.......+\frac{1}{99}-\frac{1}{101}\right)\)

\(A=3\left(1-\frac{1}{101}\right)=3.\frac{100}{101}=\frac{300}{101}\)

16 tháng 3 2017

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}\)

\(3A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)

\(3A=\frac{1}{1}-\frac{3}{101}\)\(\Rightarrow A=\left(1-\frac{1}{101}\right):3=\frac{100}{303}\)

29 tháng 4 2017

Bạn tính lại đi.

11 tháng 5 2017

\(B=\dfrac{3}{1\cdot3}+\dfrac{3}{3\cdot5}+...+\dfrac{3}{99\cdot101}\)

\(=\dfrac{3}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\)

\(=\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{2}\left(1-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{2}\left(\dfrac{101}{101}-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{2}\cdot\dfrac{100}{101}\)

\(=\dfrac{150}{101}\)

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Bài 1:

a. 

$-12-(-46)=-12+46=46-12=34$

b.

$-(-8)-54=8-54=-(54-8)=-46$

c.

$-15-(-72)=-15+72=72-15=57$

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Bài 2:

a. $(156-812)-(156-12)=156-812-156+12$

$=(156-156)-(812-12)=0-800=-800$

b.

$-(-72+83)-(72+17)=72-83-72-17=(72-72)-(83+17)$

$=0-100=-100$

c.

$-(-23-78)+(77-178)=23+78+77-178$

$=(23+77)-(178-78)=100-100=0$

d.

$(-213-156)-(-213+44)=-213-156+213-44=(-213+213)-(156+44)$

$=0-200=-200$