Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+15\%x=\left[\left(1,09-0,29\right).1\frac{1}{4}\right]:\left[\left(18,9-16\frac{13}{20}\right).\frac{8}{9}\right]\)
\(x+15\%x=\left[0,8.1\frac{1}{4}\right]:\left[2,25.\frac{8}{9}\right]\)
\(x+15\%x=1:2\)
\(x+15\%x=\frac{1}{2}\)
\(x+15x=\frac{1}{2}\)
\(16x=\frac{1}{2}\)
\(x=\frac{1}{2}:16=\frac{1}{32}\)
Vậy x=1/32
a)
số trang sách Nam đọc trong ngày thứ nhất là:
200:5x1=40 ( trang)
số trang sách NAm chưa đọc là:
200-40=160(trang)
số trang sách NAm đọc ngày thứ hai là:
160:4=40(trang)
số trang sách NAm đọc ngày thứ 3 là:
160-40=120(trang)
b)
tỉ số phần trăm số trang sách NAm đọc trong ngày thứ 1 và thứ 3 là:
40:120=33,333...%
C)
tỉ số phần trăm của ngày thứ nhất và cả cuốn sách là:
40:200=20%
ĐÁp số: a) ngày 1: 40 trang
Ngày 2: 40 trang
Ngày 3: 120 trang
b)33,333...%
c) 20%
a) Ngày thứ nhất bạn Nam đọc được số trang sách là:
\(200.\frac{1}{5}=40\) (trang)
Số trang sách ngày hai bạn Nam đọc là:
\(\left(200-40\right).\frac{1}{4}=40\) (trang)
Ngày thứ ba bạn Nam đọc số trang sách là:
\(200-\left(40+40\right)=120\) (trang)
b) Tỉ số trang sách trong ngày 1 và ngày 3 là:
\(40:120=\frac{1}{3}\)
c) Số trang sách ngày 1 Nam đọc được chiếm số % của cuốn sách là:
\(40:200=0.2=20\%\)
Đáp số: a) Ngày thứ nhất: 40 trang sách
Ngày thứ hai: 40 trang sách
Ngày thứ ba: 120 trang sách
b) \(\frac{1}{3}\)
c) 20%
để\(\frac{19}{n-1}\)là số nguyên suy ra 19 chia hết cho n-1 suy ra n-1 thuộc ước của 19
suy ra n-1=\(\left\{1;19\right\}\)suy ra n=\(\left\{2;20\right\}\)
vậy n=\(\left\{2;20\right\}\)
1.
a) 13\(\frac{1}{3}\) : 1\(\frac{1}{3}\) = 26 : (2x - 1)
<=> \(\frac{40}{3}:\frac{4}{3}\) = 13x - 26
<=> 10 + 26 = 13x
<=> 13x = 36
<=> x = \(\frac{36}{13}\)
b) 0,2 : 1\(\frac{1}{5}\) = \(\frac{2}{3}\) : (6x + 7)
<=> \(\frac{1}{5}:\frac{6}{5}\) = \(\frac{1}{9}x\) : \(\frac{2}{21}\)
<=> \(\frac{1}{6}\) = \(\frac{1}{9}x\) : \(\frac{2}{21}\)
<=> \(\frac{1}{9}x\) = \(\frac{2}{21}.\frac{1}{6}\) = \(\frac{1}{63}\)
<=> x = \(\frac{1}{7}\)
c) \(\frac{37-x}{x+13}\) = \(\frac{3}{7}\)
<=> (37 - x) . 7 = 3.(x + 13)
<=> 119 - 7x = 3x + 39
<=> -7x - 3x = 39 - 119
<=> -10x = -80
<=> x = 8
d) \(\frac{x-1}{x+5}=\frac{6}{7}\)
<=> 7(x - 1) = 6(x + 5)
<=> 7x - 7 = 6x + 30
<=> 7x - 6x = 30 + 7
<=> x = 37
e)
2\(\frac{2}{\frac{3}{0,002}}\) = \(\frac{1\frac{1}{9}}{x}\)
<=> \(\frac{1501}{750}\) = \(\frac{10}{9}:x\)
<=> x = \(\frac{10}{9}:\frac{1501}{750}\) = \(\frac{2500}{4503}\)
Bài 2. đề sai
Bài 3.
a) 6,88 : x = \(\frac{12}{27}\)
<=> x = 6,88 : \(\frac{12}{27}\)
<=> x = 15,48
b) 8\(\frac{1}{3}\) : \(11\frac{2}{3}\) = 13 : 2x
<=> \(\frac{25}{3}:\frac{35}{3}\) = 13 : 2x
<=> \(\frac{5}{7}=13:2x\)
<=> 2x = \(13:\frac{5}{7}\) = \(\frac{91}{5}\)
<=> x = 9,1
* Tính K;
Ta có: x+y+z=0 => (x+y+z)2=0
<=> x2+y2+z2+2(xy+yz+zx)=0(1)
Vì xy+yz+zx=0(2)
Từ (1)(2) => x2+y2+z2=0
Mà \(x^2;y^2;z^2\ge0\)
=> x=y=z=0
=> K= \(\left(-1\right)^{2014}+0^{2015}+1^{2016}=1+1=2\)
* Tính F
Ta có: F= \(a^2\left(a+1\right)-b^2\left(b-1\right)+ab-3ab\left(a-b-1\right)\)
= \(a^3+a^2-b^3+b^2+ab-0\)( vì a-b=1 nên a-b-1=0)
= \(\left(a^3-b^3\right)+\left(a^2+ab+b^2\right)\)
=\(\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a^2+ab+b^2\right)\)
= \(2\left(a^2+ab+b^2\right)\)
a: \(A=\dfrac{-3}{8}\left(16+\dfrac{8}{17}+7+\dfrac{9}{17}\right)=\dfrac{-3}{8}\cdot24=-9\)
b: \(B=\dfrac{\dfrac{3}{5}-\dfrac{3}{9}+\dfrac{3}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}=\dfrac{3}{7}\)
A=ghi laị biểu thức
A=(0,8*7+0,8*0,8)*(1,25*7-1,25*4/5)+31,64
A=[0,8*(7+0,8)]*[1,25*(7-4/5)]+31,64
A=(0,8*7,8)*(1,25*6,2)+31,+31,64
A=6,24*7,75+31,64
A=48,36+31,64
A=80