
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\sqrt{250\cdot360}=\sqrt{25\cdot3600}=5\cdot60=300\)
\(\sqrt{250.360}=\sqrt{250.4.90}=\sqrt{1000.90}=\sqrt{90000}=300\)

\(a^2+b^2=\left(\frac{\sqrt{2}-1}{2}\right)^2+\left(\frac{\sqrt{2}+1}{2}\right)^2\)
\(=\frac{3-2\sqrt{2}+3+2\sqrt{2}}{4}\)
\(=\frac{6}{4}\)
\(=\frac{3}{2}\)

Ta có:
1) \(A=a\cdot b=\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\sqrt{9-5}=\sqrt{4}=2\)
2) \(B=a^2+b^2=\left(\sqrt{3+\sqrt{5}}\right)^2+\left(\sqrt{3-\sqrt{5}}\right)^2\)
\(=3+\sqrt{5}+3-\sqrt{5}=6\)
3) Xét: \(\left(a+b\right)^2=a^2+2ab+b^2=10\)
\(\Rightarrow a+b=\sqrt{10}\)
\(C=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=\sqrt{10}\cdot\left(6-2\right)\)
\(=4\sqrt{10}\)
4) \(a^5+b^5=\left(a+b\right)^5-\left(5a^4b+10a^3b^2+10a^2b^3+5ab^4\right)\)
\(=\left(\sqrt{10}\right)^5-5ab\left(a^3+b^3\right)-10a^2b^2\left(a+b\right)\)
\(=100\sqrt{10}-5\cdot2\cdot4\sqrt{10}-10\cdot2^2\cdot\sqrt{10}\)
\(=100\sqrt{10}-40\sqrt{10}-40\sqrt{10}\)
\(=20\sqrt{10}\)

\(a-b=\sqrt{1-b^2}-\sqrt{1-a^2}\Leftrightarrow a+\sqrt{1-a^2}=b+\sqrt{1-b^2}\)
\(\Leftrightarrow a^2+1-a^2+2a\sqrt{1-a^2}=b^2+1-b^2+2b\sqrt{1-b^2}\)
\(\Leftrightarrow a\sqrt{1-a^2}=b\sqrt{1-b^2}\Leftrightarrow a^2\left(1-a^2\right)=b^2\left(1-b^2\right)\)
\(\Leftrightarrow a^4-b^4-a^2+b^2=0\Leftrightarrow\left(a^2-b^2\right)\left(a^2+b^2-1\right)=0\)
\(\Rightarrow a^2+b^2=1\)

Bài 1:
b: \(\cos\alpha=\sqrt{1-\left(\dfrac{3}{5}\right)^2}=\dfrac{4}{5}\)
\(\tan\alpha=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{4}\)
Bài 2:
\(\sqrt{ab}< =\dfrac{a+b}{2}\)
\(\Leftrightarrow a+b>=2\sqrt{ab}\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)
a) √(0,16.0,64.225)
= √0,16.√0,64.√225
= 0,4.0,8.15 = 4,8
b) √(250.360)
= √25.36.100
= √25.√36.√100
= 5.6.10 = 300