Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) = \(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}=\)
\(\sqrt{\left(2-2\sqrt{2}+1\right)}+\sqrt{\left(2+2\sqrt{2}+1\right)}\)
=\(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(1+\sqrt{2}\right)^2}\)
= \(\sqrt{2}-1+1+\sqrt{2}=2\sqrt{2}\)
câu sau làm tương tự nhé
\(a,P=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{4x}{4-x}\right):\dfrac{x+5\sqrt{x}+6}{x-4}\left(dk:x\ge0,x\ne4\right)\)
\(=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+2}+\dfrac{4x}{x-4}\right).\dfrac{x-4}{x+2\sqrt{x}+3\sqrt{x}+6}\)
\(=\dfrac{\left(\sqrt{x}+2\right)^2-\left(\sqrt{x}-2\right)^2+4x}{x-4}.\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}+2\right)+3\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+4\sqrt{x}+4-x+4\sqrt{x}-4+4x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{4x+8\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{4\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{4\sqrt{x}}{\sqrt{x}+3}\)
\(b,x=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{4}}\\ =\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\\ =\left|\sqrt{5}+2\right|-\left|\sqrt{5}-2\right|\\ =\sqrt{5}+2-\sqrt{5}+2\\ =4\)
Khi \(x=4\Rightarrow P=\dfrac{4\sqrt{4}}{\sqrt{4}+3}=\dfrac{4.2}{2+3}=\dfrac{8}{5}\)
\(c,P=2\Leftrightarrow\dfrac{4\sqrt{x}}{\sqrt{x}+3}=2\Leftrightarrow\dfrac{4\sqrt{x}-2\left(\sqrt{x}+3\right)}{\sqrt{x}+3}=0\Leftrightarrow2\sqrt{x}-6=0\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\)
a) \(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
\(=2\sqrt{5}+2+\sqrt{5}-2\)
\(=3\sqrt{5}\)
b) \(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)
\(=3-2\sqrt{2}+2\sqrt{2}-1\)
=2
c) \(\sqrt{6-4\sqrt{2}}+\sqrt{22-12\sqrt{2}}\)
\(=2-\sqrt{2}+3\sqrt{2}-2\)
\(=2\sqrt{2}\)
14dm5cm=14,5dm;3dm7cm=3,7dm
chu vi hình chữ nhật đó là:
(14,5+3,7)x2=36,4(dm)
ĐS:36,4dm
14 dm 5 cm = 14,5 dm
3 dm 7 cm = 3,7 dm
Chiều rộng HCN là :
14,5 - 3,7 = 10,8 ( dm )
chu vi HCN là :
( 14,5 + 10,8 ) x 2 = 50,6 ( dm )
ĐS:..
a) Ta có: \(9+4\sqrt{5}\)
\(=5+2\cdot\sqrt{5}\cdot2+4\)
\(=\left(\sqrt{5}+2\right)^2\)(đpcm)
b) Ta có: \(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}\)
\(=\sqrt{5}-2-\sqrt{5}\)
=-2(ddpcm)
c) Ta có: \(\left(4-\sqrt{7}\right)^2\)
\(=16-2\cdot4\cdot\sqrt{7}+7\)
\(=23-8\sqrt{7}\)(đpcm)
d) Ta có: \(\sqrt{17-12\sqrt{2}}+2\sqrt{2}\)
\(=\sqrt{9-2\cdot3\cdot2\sqrt{2}+8}+2\sqrt{2}\)
\(=\sqrt{\left(3-2\sqrt{2}\right)^2}+2\sqrt{2}\)
\(=3-2\sqrt{2}+2\sqrt{2}=3\)(đpcm)
\(a.VT=4+4\sqrt{5}+5=2^2+4\sqrt{5}+\sqrt{5}^2=\left(2+\sqrt{5}\right)^2=VP\)
\(b.\) Dựa vào câu a ta có: \(9-4\sqrt{5}=\left(\sqrt{5}-2\right)^2\)
\(VT=\left|\sqrt{5}-2\right|-\sqrt{5}=\sqrt{5}-2-\sqrt{5}=-2=VP\)
\(c.VT=16-8\sqrt{7}+7=4^2-8\sqrt{7}+\sqrt{7}^2=\left(4-\sqrt{7}\right)^2=VP\)
\(d.\)
Ta có: \(17-12\sqrt{2}=8-12\sqrt{2}+9=\left(2\sqrt{2}\right)^2-12\sqrt{2}+3^2=\left(2\sqrt{2}-3\right)^2\)
\(VT=\left|2\sqrt{2}-3\right|+2\sqrt{2}=3-2\sqrt{2}+2\sqrt{2}=3=VP\)
\(a,\frac{2}{\sqrt{2}-1}-\frac{2}{\sqrt{2}+1}=\frac{2\left(\sqrt{2}+1\right)-2\left(\sqrt{2}-1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)
\(=\frac{2\sqrt{2}+2-2\sqrt{2}+2}{\sqrt{2}^2-1^2}=\frac{4}{2-1}=4\)
\(b,\sqrt{6+4\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)
\(=\sqrt{4+2.2.\sqrt{2}+2}+\sqrt{4-2.2.\sqrt{2}+2}\)
\(=\sqrt{2^2+2.2.\sqrt{2}+\sqrt{2}^2}+\sqrt{2^2-2.2.\sqrt{2}+\sqrt{2}^2}\)
\(=\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(=|2+\sqrt{2}|+|2-\sqrt{2}|=2+2=4\)
\(c,\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{4+2.2.\sqrt{5}+5}+\sqrt{4-2.2.\sqrt{5}+5}\)
\(=\sqrt{2^2+2.2.\sqrt{5}+\sqrt{5}^2}+\sqrt{2^2-2.2.\sqrt{5}+\sqrt{5}^2}\)
\(=\sqrt{\left(2+\sqrt{5}\right)^2}+\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(=|2+\sqrt{5}|+|2-\sqrt{5}|=2+\sqrt{5}+\sqrt{5}-2=2\sqrt{5}\)
câu d bạn cứ nhân bình thường
5^2 - 2 * 5 * 9 : 2 + ( 9 : 2 )^2 = 25 - 10 * 9 : 2 + 4,5^2 = 25 - 90 : 2 + 20,25 = 25 - 45 + 20,25 = 0,25
4^2 - 2 * 4 * 9 : 2 + ( 9 : 2 )^2 = 16 - 8 * 9 : 2 + 4,5^2 = 16 - 72 : 2 + 20,25 = 16 - 36 + 20,25 = 0,25
giải thích rõ nhé