K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2018

ban con choi bangbang ko cho minh muon nick

c: C=125x^3+150x^2+60x+8+125x^3-150x^2+60x-8-2(x^2-4)

=250x^3+120x-2x^2+8

=250x^3-2x^2+120x+8

d: D=(4x)^3-3^3-(4x)^3-3^3

=64x^3-27-64x^3-27

=-54

3 tháng 9 2023

c) \(C=\left(5x+2\right)^3+\left(5x-2\right)^3-2\left(x-2\right)\left(x+2\right)\)

\(=\left[\left(5x\right)^3+3\cdot\left(5x\right)^2\cdot2+3\cdot5x\cdot2^2+2^3\right]+\left[\left(5x\right)^3-3\cdot\left(5x\right)^2\cdot2+3\cdot5x\cdot2^2-2^3\right]-2\left(x^2-4\right)\)

\(=125x^3+150x^2+60x+8+125x^3-150x^2+60x-8-2x^2+8\)

\(=\left(125x^3+125x^3\right)+\left(150x^2-150x^2-2x^2\right)+\left(60x+60x\right)+\left(8-8+8\right)\)

\(=250x^3-2x^2+120x+8\)

d) \(D=\left(4x-3\right)\left(16x^2+12x+9\right)-\left(4x+3\right)\left(16x^2-12x+9\right)\)

\(=\left(4x\right)^3-3^3-\left[\left(4x\right)^3+3^3\right]\)

\(=64x^3-27-\left(64x^3+27\right)\)

\(=64x^3-27-64x^3-27\)

\(=-27-27\)

\(=-54\)

NV
22 tháng 7 2021

a.

\(=xy\left(x+xy-y\right)\)

b.

\(3xy-6y+x^2-2x=3y\left(x-2\right)+x\left(x-2\right)\)

\(=\left(3y+x\right)\left(x-2\right)\)

c.

\(x^2-12x+36-64y^2=\left(x-6\right)^2-\left(8y\right)^2\)

\(=\left(x-6+8y\right)\left(x-6-8y\right)\)

d.

\(x^2+7x+10=x^2+2x+5x+10=x\left(x+2\right)+5\left(x+2\right)\)

\(=\left(x+2\right)\left(x+5\right)\)

19 tháng 3 2019

Ta có : \(\frac{12x^2+12x+11}{4x^2+4x+3}=\frac{5y^2-10y+9}{y^2-2y+2}\)

\(\Leftrightarrow\frac{3\left(4x^2+4x+3\right)+2}{4x^2+4x+3}=\frac{5\left(y^2-2y+2\right)-1}{y^2-2y+2}\)

\(\Leftrightarrow3+\frac{2}{4x^2+4x+3}=5-\frac{1}{y^2-2y+2}\)

Do \(\frac{2}{4x^2+4x+3}=\frac{2}{\left(2x+1\right)^2+2}\le\frac{2}{2}=1\) \(\Rightarrow3+\frac{2}{4x^2+4x+3}\le4\left(1\right)\)

\(\frac{1}{y^2-2y+2}=\frac{1}{\left(y-1\right)^2+1}\le\frac{1}{1}=1\) \(\Rightarrow5-\frac{1}{y^2-2y+2}\ge5-1=4\left(2\right)\)

Từ ( 1 ) ; ( 2 ) \(\Rightarrow VT=VP=4\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\y-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=1\end{matrix}\right.\)

Vậy ....

24 tháng 12 2021

b: 

1: \(\Leftrightarrow2x\left(x+2\right)=0\)

=>x=0 hoặc x=-2

5 tháng 8 2016

 Đặt (a + b)3 = a3 + 3a2b + 3ab2 + b3 = 8x3 + 12x2 + ... + ...

                                                          = (2x)3 + 3.(2x)2.1 + ... + ...

=> a = 2x ; b = 1 => 8x3 + 12x2 + 6x + 1 = (2x + 1)

29 tháng 2 2020

\(\frac{1}{4x^2-12x+9}-\frac{3}{9-4x^2}=\frac{4}{4x^2+12x+9}\)

\(\Leftrightarrow\frac{-1}{\left(3-2x\right)^2}-\frac{3}{\left(3-2x\right)\left(3+2x\right)}=\frac{4}{\left(2x+3\right)^2}\)

\(\Leftrightarrow-4x^2-12x-9-27+12x^2-16x^2+48x-36=0\)

\(\Leftrightarrow-8x^2+36x-72=0\)

Rút -4 ra ngoài \(\Leftrightarrow2x^2-9x+18=0\)

\(\Leftrightarrow\left(2x-3\right)\left(x-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3=0\\x-6=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}2x=3\\x=6\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=6\end{cases}\left(tmđk\right)}\)

25 tháng 8 2023

a) \(x^2+2x+1=\left(x+1\right)^2\)

b) \(x^2+8x+16=\left(x+4\right)^2\)

c) \(x^2+6x+9=\left(x+3\right)^2\)

d) \(4x^2+4x+1=\left(2x+1\right)^2\)

e) \(36+x^2-12x=x^2-12x+36=\left(x-6\right)^2\)

f) \(4x^2+12x+9=\left(2x+3\right)^2\)

g) \(x^4+81+18x^2=x^4+18x^2+81=\left(x^2+9\right)^2\)

h) \(9x^2+30xy+25y^2=\left(3x+5y\right)^2\)

25 tháng 8 2023

a, \(x^2\) + 2\(x\) + 1 = (\(x\) + 1)2

b, \(x^2\) + 8\(x\) + 16 = (\(x\) + 4)2

c, \(x^2\) + 6\(x\) + 9 = (\(x\) + 3)2

d, 4\(x^2\) + 4\(x\) + 1 = (2\(x\) + 1)2