K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2015

3xy (2x^2 - y)

=6x3y-3xy2

-2x^2y (xy^2 -xy )

=-2x3y3+2x3y2

13 tháng 8 2015

M = 5xy^2 - 3x^2y + 4 + 3xy(x+y)

   = 5xy^2 - 3x^2y + 4 + 3x^2y + 3xy^2

  = 8xy^2 + 4

M = -6xy^2 ( x^2y - 1/2xy) - 3xy( x^2 y^2 + xy )

   = -6x^3y^3 + 3 x^2y^3 - 3x^3y^3 - 3x^2y^2 

  = -9x^3y^3 + 3x^2y^3 - 3x^2y^2 

4 tháng 6 2020

a) M - 3xy(x+y) = 5xy2 - 3x2y + 4

<=> M - ( 3x2y + 3xy2 ) = 5xy2 - 3x2y + 4

<=> M = 5xy2 - 3x2y + 4 + 3x2y + 3xy2

<=> M = 8xy2 + 4

b) -6xy2 ( x2y - 1/2xy ) - M = 3xy(x2y2 + xy)

<=> -6x3y3 + 3x2y3 - M = 3x3y3 + 3x2y2

<=> M = ( -6x3y3 + 3x2y3 ) - ( 3x3y3 + 3x2y2 )

<=> M = -6x3y3 + 3x2y3 - 3x3y3 - 3x2y2

<=> M = -9x3y3 + 3x2y3 - 3x2y2

13 tháng 8 2015

=> 4x^2  - 12x + 4 = 2x^2 - 2x - 2 - 2x^2 - 2x - 13

=> 4x^2 - 12x + 4 = - 4x - 15

=> 4x^2 - 12x + 4x + 4 + 15 = 0 

=> 4x^2 - 8x + 19 = 0

Đề sai 

19 tháng 2 2022

\(=2xy-2yz^2+xy+\frac{1}{2}yz^2+2yz^2=3xy+\frac{1}{2}yz^2\)

10 tháng 1 2016

\(2x=3y=5z=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)

|x - 2y| = 5 => x - 2y = 5 hoặc x - 2y = -5

Áp dụng tính chất DTSBN ta có:

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-2y}{\frac{1}{2}-\frac{2}{3}}=\frac{5}{-\frac{1}{6}}=-30\)

x/1/2 = -30 => x = -15

y/1/3 = -30 => y = -10

z/1/5 = -30 => z = -6

TH2: Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-2y}{\frac{1}{2}-\frac{2}{3}}=-\frac{5}{-\frac{1}{6}}=30\)

x/1/2 = 30 => x = 15

y/1/3 = 30 => y = 10

z/1/5 = 30 => z=  6

 

10 tháng 1 2016

a,

2x=3y=5z

=>\(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=>\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)=>\(\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}\)

mà l x-2y l =5

=>x-2y=5 hoặc x-2y=-5

nếu x-2y=5

=>x/15=2y/20=x-2y/15-20=5/-5=-1

=>x=-15

=>y=-10

=>z=-6

nếu x-2y=-5

=>x/15=2y/20=x-2y=-5/-5=1

=>x=15

=>y=10

=>z=6

còn b/c bạn đăng từng bài 1 nhé làm thế này lâu lắm  ! đăng câu khác mik làm tiếp cho !

12 tháng 4 2021

Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 M=x3+x2y−2x2−xy−y2+3y+x−1M=x3+x2y−2x2−xy−y2+3y+x−1

M=x3+x2y−2x2−xy−y2+(2y+y)+x−(−2+1)M=x3+x2y−2x2−xy−y2+(2y+y)+x−(−2+1)

M=(x3+x2y−2x2)−(xy+y2−2y)+(x+y−2)+1M=(x3+x2y−2x2)−(xy+y2−2y)+(x+y−2)+1

M=(x2.x+x2.y−2x2)−(x.y+y.y−2y)+(x+y−2)+1M=(x2.x+x2.y−2x2)−(x.y+y.y−2y)+(x+y−2)+1

M=x2.(x+y−2)−y.(x+y−2)+(x+y−2)+1M=x2.(x+y−2)−y.(x+y−2)+(x+y−2)+1

M=x2.0+y.0+0+1M=x2.0+y.0+0+1

M=1M=1

N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−2N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−2

N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−(−4+2)N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−(−4+2)

N=(x3+x2y−2x2)−(x2y+xy2−2xy)+(2x+2y−4)+2N=(x3+x2y−2x2)−(x2y+xy2−2xy)+(2x+2y−4)+2

N=(x2x+x2y−2x2)−(xyx+xyy−2xy)+(2x+2y−4)+2N=(x2x+x2y−2x2)−(xyx+xyy−2xy)+(2x+2y−4)+2

N=x2(x+y−2)−xy(x+y−2)+2(x+y−2)+2N=x2(x+y−2)−xy(x+y−2)+2(x+y−2)+2

N=x2.0−xy.0+2.0+2N=x2.0−xy.0+2.0+2

N=2N=2

P=x4+2x3y−2x3+x2y2−2x2y−x(x+y)+2x+3P=x4+2x3y−2x3+x2y2−2x2y−x(x+y)+2x+3

P=(x4+x3y−2x3)+(x3y+x2y2−2x2y)−(x2+xy−2x)+3P=(x4+x3y−2x3)+(x3y+x2y2−2x2y)−(x2+xy−2x)+3P=(x3x+x3y−2x3)+(x2y.x+x2yy−2x2y)−(xx+xy−2x)+3P=(x3x+x3y−2x3)+(x2y.x+x2yy−2x2y)−(xx+xy−2x)+3

P=x3(x+y−2)+x2y(x+y−2)−x(x+y−2)+3P=x3(x+y−2)+x2y(x+y−2)−x(x+y−2)+3

P=x3.0+x2y.0−x.0+3P=x3.0+x2y.0−x.0+3

P=3