Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d: \(\dfrac{x^4-2x^3+2x-1}{x^2-1}\)
\(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}\)
\(=x^2-2x+1\)
\(=\left(x-1\right)^2\)
\(a,=4x^2+3xy-y^2+4xy-4x^2=7xy-y^2\\ b,=x^2-9-x^3+3x+x^2-3=-x^3+2x^2+3x-12\\ c,=-2x^2+12x-18+5x^2+4x-1=3x^2+16x-19\\ d,=8x^3+1-3x^3+6x^2=5x^3+6x^2+1\\ e,=\left(3x^2+4x+15x+20\right):\left(3x+4\right)\\ =\left(3x+4\right)\left(x+5\right):\left(3x+4\right)\\ =x+5\\ f,=\left(x^3+4x^2-3x+3x^2+12x-9+3x+3\right):\left(x^2+4x-3\right)\\ =\left[\left(x^2+4x-3\right)\left(x+3\right)+3x+3\right]:\left(x^2+4x-3\right)\\ =x+3\left(dư.3x+3\right)\)
a.
\(\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-11x+28}+\dfrac{1}{x^2-19x+84}=\dfrac{1}{4}\\ \Rightarrow\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-7\right)}+\dfrac{1}{\left(x-7\right)\left(x-12\right)}=\dfrac{1}{4}\\ \Rightarrow\dfrac{1}{x-3}-\dfrac{1}{x-12}=\dfrac{1}{4}\\ \Rightarrow\dfrac{-9}{\left(x-3\right)\left(x-12\right)}=\dfrac{1}{4}\\ \Rightarrow x^2-15x+36=-36\\ \)
Tự giải tiếp
a) \(\left(2x-1\right)^2-\left(x+2\right)^2-3x^2+5x\)
\(=4x^2-4x+1-\left(x^2+4x+4\right)-3x^2+5x\)
\(=x^2-3x-3\)
b) \(\left(x+2\right)\left(x-1\right)+2\left(3x-2\right)^2+4x-19x^2\)
\(=x^2+2x-x-2+2\left(9x^2-12x+4\right)+4x-19x^2\)
\(=x^2+2x-x-2+18x^2-24x+8+4x-19x^2\)
\(=-19x+6\)
c) \(2\left(3-x\right)\left(x-2\right)-\left(3x+1\right)^2+5x-11x^2\)
\(=6-2x\left(x-2\right)-\left(9x^2+6x+1\right)+5x-11x^2\)
\(=6-2x^3+4x-9x^2-6x-1+5x-11x^2\)
\(=-2x^3-20x^2+3x+5\)
a, \(3x+2\left(x-5\right)=6-\left(5x-1\right)\)
\(\Leftrightarrow3x+2x-10=6-5x+1\)
\(\Leftrightarrow-15\ne0\)Vậy phương trình vô nghiệm
b, \(x^3-3x^2-x+3=0\)
\(\Leftrightarrow x\left(x^2-1\right)-3\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x+1\right)=0\Leftrightarrow x=3;\pm1\)
Vậy tập nghiệm của phương trình là S = { 1 ; -1 ; 3 }
c, \(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}ĐK:x\ne\pm3\)
\(\Leftrightarrow\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow x+3+x^2-3x-2=0\)
\(\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)thỏa mãn
Vậy ...
Đặt phép chia ta được kết quả : \(6x^3-19x^2-2=\left(3x^2-5x+1\right)\left(2x-3\right)+\left(1-17x\right)\)
Để phép chia hết => 1 -17x = 0 => x = 1/17