Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)1.2.3.4...9-1.2.3.4...8-1.2.3.4...8.8
=1.2.3.4...8(9-1-8)
=1.2.3.4...8.0
=0
b)(3.4.216)2/11.123.411-169=(3.22.216)2/11.213.222-236=32.24.232/11.235-236=32.226/235.(11-2)
=32.236/235.9=32.236/235.32=2
c)70.(131313/565656+131313/727272+131313/909090
=70.(13/56+13/72+13/90)
=70.39/70=39
d)1/4.9+1/9.14+1/14.19+...+1/64.69
=4/4.9.4+4/9.4.14+4/14.19.4+...+4/64.69.4.
=1/4.(4/4.9+4/9.14+4/14.19+...+4/64.69)
=1/4.(1/4-1/9+1/9-1/14+1/14-1/19+...+1/64-1/69)
=1/4.(1/4-1/69)
=1/4.65/276=65/1104
~~~~~~~~Chúc bạn học giỏi nhé !~~~~~~~~
\(C=\dfrac{5\times2^{12}\times3^8-3^9\times2^{12}}{2^2\times2^{13}\times3^8+2\times2^{12}\times\left(-3^9\right)}=\dfrac{3^8\times2^{12}\times\left(5-3\right)}{2^{15}\times3^8+2^{13}\times\left(-3\right)^9}\)
\(=\dfrac{3^8\times2^{12}\times2}{2^{13}\times3^8\times\left(4-3\right)}=\dfrac{1}{1}=1\)
\(#PaooNqoccc\)
Ta có :
\(S=\frac{5\times2^{30}\times6^2\times3^{15}-2^3\times8^9\times3^{17}\times21}{21\times2^{29}\times3^{16}\times4-2^{29}\times\left(3^4\right)^5}\)
\(S=\frac{5\times2^{30}\times2^2\times3^2\times3^{15}-2^3\times2^{27}\times3^{17}\times3\times7}{3\times7\times2^{29}\times3^{16}\times2^2-2^{29}\times3^{20}}\)
\(S=\frac{5\times2^{32}\times3^{17}-2^{30}\times3^{18}\times7}{7\times2^{31}\times3^{17}-2^{29}\times3^{20}}\)
\(S=\frac{2^{30}\times3^{17}\times\left(5\times2^2-3\times7\right)}{2^{29}\times3^{17}\times\left(2^2\times7-3^3\right)}\)
\(S=\frac{2^{30}\times3^{17}\times\left(-1\right)}{2^{29}\times3^{17}\times1}\)
\(\Rightarrow S=-2\)
Ko viết đề :)
\(S=\frac{5\cdot2^{30}\cdot2^2\cdot3^2\cdot3^{15}-2^3\cdot2^{27}\cdot3^{17}\cdot3\cdot7}{3\cdot7\cdot2^{29}\cdot3^{16}\cdot2^2-2^{29}\cdot3^{20}}\)
\(=\frac{5\cdot2^{32}\cdot3^{17}-2^{30}\cdot3^{18}\cdot7}{3^{17}\cdot7\cdot2^{31}-2^{29}\cdot3^{20}}\)
\(=\frac{2^{30}\cdot3^{17}\left(5\cdot2^2-3\cdot7\right)}{2^{29}\cdot3^{17}\left(7\cdot2^2-3^3\right)}\)
\(=\frac{2\left(20-21\right)}{28-27}\)
\(=\frac{40-42}{1}=-\frac{2}{1}=-2\)
Vậy S= -2
\(M=\frac{1.2.3.4.5...98.99}{10}\)
\(M=1.2.3.4.5.6.7.8.9.11.12...98.99\)
Ta có : S = \(\frac{5.2^{30}.6^3.3^{15}-2^3.8^9.3^{17}.21}{21.2^{29}.3^{16}.4-2^{29}.\left(3^4\right)^5}=\frac{5.2^{30}.\left(2.3\right)^3.3^{15}-2^3.\left(2^3\right)^9.3^{17}.3.7}{3.7.2^{29}.3^{16}.2^2-2^{29}.3^{20}}=\frac{5.2^{33}.3^{18}-2^{30}.3^{18}.7}{3^{17}.7.2^{31}-2^{29}.3^{20}}\)
\(=\frac{2^{30}.3^{18}.\left(5.2^3-7\right)}{3^{17}.2^{29}.\left(7.2^2-3^3\right)}=2.3.33=198\)
A=\(\frac{5x\left(2^2x3^2\right)^9-2x\left(2^2x3\right)^{14}x3^4}{5x2^{28}x3^{18}-7x2^{29}x3^{18}}\)=\(\frac{5x2^{18}x3^{18}-2x2^{28}x3^{14}x3^4}{2^{28}x3^{18}x\left(5-7x2\right)}\)=\(\frac{5x2^{18}x3^{18}-2^{29}x3^{18}}{2^{28}x3^{18}x\left(-9\right)}\)=
= \(\frac{2^{18}x3^{18}\left(5-2^{11}\right)}{-9x2^{28}x3^{18}}=\frac{5-2^{11}}{-9x2^{10}}=\frac{2043}{9216}=\frac{227}{1024}\)
\(1.1!+2.2!+3.3!+4.4!+5.5!\\ \)
\(=1.1.1+2.1.2+3.1.2.3+4.1.2.3.4+5.1.2.3.4.5\)
\(=1+2^2.1+3^3.1.2+4^2.1.2.3+5^2.1.2.3.4\)
Ngồi tính :)
\(1\cdot2\cdot3\cdot...\cdot8\cdot9-1\cdot2\cdot3\cdot...\cdot8-1\cdot2\cdot3\cdot...\cdot8^2\)
=\(1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7\cdot8\cdot\left(9-1-8\right)\)(đặt 1*2*3*...*8 ra ngoài)
=\(1\cdot2\cdot3\cdot...\cdot8\cdot0=0\)
bằng 0 bạn nhé