K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

=1.99+2.(99-1)+3.(99-2)+...+98.(99-97)+99(99-98)

=99.(1+2+3+4+...+98+99)-(2+2.3+3.4+...+97.98+98.99)

=99.(1+99).99/2-98.99.100/3

=99.50.99-98.33.100

=490050-323400

=166650

=1.99+2.(99-1)+3.(99-2)+...+98.(99-97)+99(99-98)

=99.(1+2+3+4+...+98+99)-(2+2.3+3.4+...+97.98+98.99)

=99.(1+99).99/2-98.99.100/3

=99.50.99-98.33.100

=490050-323400

=166650

15 tháng 4 2015

hic hic mai phải nộp rồi mọi người giúp kim oanh nha oaoa

 

=1.99+2.(99-1)+3.(99-2)+...+98.(99-97)+99(99-98)

=99.(1+2+3+4+...+98+99)-(2+2.3+3.4+...+97.98+98.99)

=99.(1+99).99/2-98.99.100/3

=99.50.99-98.33.100

=490050-323400

=166650

3 tháng 2 2017

\(A = 1.99 + 2.98 + 3.97 + ...+ 97.3 + 98.2 + 99.1\)

\(A=1.99+2.\left(99-1\right)+3.\left(99-2\right)+...+98.\left(99-97\right)+99.\left(99-98\right)\)

\(A=1.99+2.99-1.2+3.99-2.3+98.99-97.98+99.99-98.99\)

\(=\left(1.99+2.99+3.99+...+98.99+99.99\right)-\left(1.2+2.3+3.4+...+97.98+98.99\right)\)

\(=99.\left(1+2+3+...+98+99\right)-\left(1.2+2.3+3.4+...+97.98+98.99\right)\)

\(=99.4950-\left(1.2+2.3+3.4+97.98+98.99\right)\)

\(1.2+2.3+3.4+...97.98+98.99\)

\(=\frac{1}{3}.\left[1.2+2.3.\left(4-1\right)+3.4.\left(5-2\right)+98.99.\left(100-97\right)\right]\)

\(=\frac{1}{3}.98.99.100=323400\)

\(\Rightarrow A=99.4950-323400=166650\)

3 tháng 2 2017

Tick cho nè

18 tháng 4 2016

bo tay

8 tháng 6 2016

Ô tô đi với vận tốc 50km/giờ vì :

         100 : 2 = 50

                   đs : 50

8 tháng 6 2016

Ô tô đi với vận tốc 50km/giờ vì :

         100 : 2 = 50

                   đs : 50

22 tháng 7 2016

Ta có: C = 1.2 + 2.3 + 3.4 + ..... + 98.99

=> 3C = 3.(1.2 + 2.3 + 3.4 + ..... + 98.99)

=> 3C = 1.2.(3 - 0) + 2.3.(4 - 1) + .... + 98.99.(100 - 97)

=> 3C = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ..... + 98.99.100

=> 3C = 98.99.100

=> C = $C=\frac{98.99.100}{3}=485100$

1.99+2.98+3.97+...+98.2+99.1=1.99+2.(99-1)+3.(99-2)+...+98.(99-97)+99.(99-98)

=1.99+2.99-1.2+3.99-2.3+...+98.99-97.98+99.99-98.99

=(1.99+2.99+3.99+...+98.99+99.99)-(1.2+2.3+3.4+...+98.99)

=99.(1+2+...+99)-(1.2+2.3+...+98.99)=99.4950-(1.2+2.3+...+98.99)=490050-(1.2+2.3+...+98.99)

đặt A=1.2+2.3+...+98.99

=>3A=1.2.3+2.3.3+...+98.99.3

=1.2.3+2.3.(4-1)+...+98.99.(100-97)

=1.2.3-1.2.3+2.3.4-2.3.4+...+97.98.99-97.98.99+98.99.100=98.99.100

=>A=98.99.100:3=323400

=>1.99+2.98+3.97+...+98.2+99.1=490050-323400=166650

17 tháng 5 2015

1.99+2.98+3.97+4.96+...+98.2+99.1

=1.99+2.(99-1)+3.(99-2)+...+98.(99-97)+99.(99-98)

=1.99+2.99-1.2+3.99-2.3+...+98.99-97.98+99.99-98.99

=(1.99+2.99+3.99+4.99+...+98.99+99.99)-(1.2+2.3+3.4+...+97.98+98.99)

=(1+2+3+4+...+98+99).99-(98.99.100)/3

={(99-1+1)/2}.100.99-(98.99.100)/3

=49,5.100.99-(98.99.100)/3

=4950.99-(98.99.100)/3

=4950.3.33-98.100.33

B=14850.33-9800.33

B=(14850-9800).33

B=5050.33

B=166650

6 tháng 12 2016

b)Ta chứng minh công thức \(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\) (*)

Với n=1 (*) đúng

Giả sử (*) đúng với n=k, khi đó ta có

\(1^2+2^2+...+k^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) (1)

Ta chứng minh (1) đúng với n=k+1, từ (1) suy ra:

\(1^2+2^2+...+k^2+\left(k+1\right)^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)

\(=\left(k+1\right)\left(\frac{k\left(2k+1\right)}{6}+k+1\right)=\left(k+1\right)\frac{2k^2+7k+6}{6}\)

\(=\frac{\left(k+1\right)\left(2k^2+4k+3k+6\right)}{6}=\frac{\left(k+1\right)\left[2k\left(k+2\right)+3\left(k+2\right)\right]}{6}=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)

Theo nguyên lí quy nạp ta có ĐPCM

Áp dụng vào bài toán ta có:

\(B=\frac{98\left(98+1\right)\left(2\cdot98+1\right)}{6}=318549\)

 

6 tháng 12 2016

a)\(A=1\cdot2+2\cdot3+...+98\cdot99\)

\(3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+98\cdot99\left(100-97\right)\)

\(3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+98\cdot99\cdot100-97\cdot98\cdot99\)

\(3A=98\cdot99\cdot100=\frac{98\cdot99\cdot100}{3}=323400\)