Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2^{19}3^9+5.2^{18}3^9}{3^9.2^9.2^{10}+3^{10}4^{10}}=\frac{3^9\left(2^{19}+5.2^{18}\right)}{3^92^{19}+3^{10}2^{20}}=\frac{3^9\left(2^{19}+5.2^{18}\right)}{3^9\left(2^{19}+3.2^{20}\right)}=\frac{2^{19}+5.2^{18}}{2^{19}+3.2^{20}}=\frac{2^{18}\left(2+5\right)}{2^{18}\left(2+3.2^2\right)}\)
\(=\frac{2+5}{2+3.2^2}=\frac{7}{14}=\frac{1}{2}\)
\(8^{15}\times4^{13}=2^{45}\times2^{26}=2^{71}\)
\(\left(\frac{1}{2}\right)^{18}\times\left(\frac{1}{4}\right)^{24}=\left(\frac{1}{2}\right)^{18}\times\left(\frac{1}{2}\right)^{48}=\left(\frac{1}{2}\right)^{66}\)
\(9^{12}\times27^{10}=3^{24}\times3^{30}=3^{54}\)
\(8^{15}\cdot4^{13}=\left(4^2\right)^{15}\cdot4^{13}=4^{30}\cdot4^{13}=4^{43}\)
\(\left(\frac{1}{2}\right)^{18}\cdot\left(\frac{1}{4}\right)^{24}=\left(\frac{1}{2}\right)^{18}\cdot\left[\left(\frac{1}{2}\right)^2\right]^{24}=\left(\frac{1}{2}\right)^{66}\)
\(9^{12}\cdot27^{10}=3^{36}\cdot3^{30}=3^{66}\)
Có: \(5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9=5\cdot2^{30}\cdot3^{18}-2^2\cdot3^{20}\cdot2^{27}=5\cdot2^{30}\cdot3^{18}-3^{20}\cdot2^{29}\)
\(=3^{18}\cdot2^{29}\cdot\left(5\cdot2-3^2\right)=3^{18}\cdot2^{29}\)
Lại có: \(5\cdot2^{10}\cdot6^{19}-7\cdot2^{29}\cdot27^6=5\cdot2^{10}\cdot2^{19}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}=5\cdot2^{29}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}\)
\(=2^{19}\cdot3^{18}\cdot\left(5\cdot3-7\right)=2^{19}\cdot3^{18}\cdot2^3=2^{22}\cdot3^{18}\)
Vậy \(\frac{3^{18}\cdot2^{29}}{2^{22}\cdot3^{18}}=2^7=128\)