K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2016

Đặt A = 1.2 + 2.3 + 3.4 + .... + 199.200

⇒ 3A = 1.2.3 + 2.3.3 + 3.4.3 + .... + 199.200.3

⇒ 3A = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + .... + 199.200.( 201 - 198 )

⇒ 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 199.200.201 - 198.199.200 

⇒ 3A = ( 1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + .... + ( 198.199.200 - 198.199.200 ) + 199.200.201

⇒ 3A = 199.200.201

⇒ 3A = \(\frac{199.200.201}{3}\)

3 tháng 4 2016

giải chưa nhở

2 tháng 7 2017

mk cx đg cần giải bài này

7 tháng 3 2020

\(A=\frac{4}{6}+\frac{10}{12}+\frac{18}{20}+...+\frac{9898}{9900}\)

\(A=1-\frac{2}{6}+1-\frac{2}{12}+1-\frac{2}{20}+...+1-\frac{2}{9900}\)

\(A=98-\left(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{99.100}\right)\)Đặt Biểu thức trong ngoặc đơn là B

\(\Rightarrow A=98-B\)

\(\Rightarrow\frac{B}{2}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(\frac{B}{2}=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{100-99}{99.100}\)

\(\frac{B}{2}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

\(\Rightarrow B=\frac{2.49}{100}=\frac{98}{100}\)

Ta nhận thấy \(B=\frac{98}{100}< 1\Rightarrow A=98-\frac{98}{100}=97+\frac{2}{100}\)

\(\Rightarrow97< A< 98\left(dpcm\right)\)

12 tháng 5 2017

N=\(\frac{1.4}{2.3}+\frac{2.5}{3.4}+\frac{3.6}{4.5}+....+\)\(\frac{98.101}{99.100}\)

N=\(\frac{1.2.3...98}{2.3.4...99}\)\(+\)\(\frac{4.5.6....101}{3.4.5....100}\)

N=\(\frac{1}{99}+\frac{101}{3}\)

N=\(\frac{3334}{99}\)

24 tháng 2 2023

Đặt \(A=1.4+2.5+3.6+...+100.103\)

\(=1\left(2.2\right)+2\left(3+2\right)+3\left(4+2\right)+...+100\left(101+2\right)\)

\(=1.2+2.3+3.4+...+100.101+\left(1.2+2.2+3.2+...+100.2\right)\)

\(=1.2+2.3+3.4+...+100.101+2\left(1+2+3+...+100\right)\)

\(=1.2+2.3+3.4+...+100.101+2.100\left(100+1\right):2\)

\(=1.2+2.3+3.4+...+100.101+10100\)

Đặt \(B=1.2+2.3+3.4+...+100.101\)

\(\Rightarrow3B=1.2.3+2.3.3+3.4.3+100.101.3\)

\(\Rightarrow3B=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+100.101\left(102-99\right)\)

\(\Rightarrow3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+100.101.102-99.100.101\)

\(\Rightarrow3B=100.101.102\)

\(\Rightarrow B=343400\)

Khi đó \(A=343400=10100=333300\)

24 tháng 2 2023

Đặt A = 1.4 + 2.5 + 3.6 + 4.7 + ... + 100.103

3A = 3.(1.2 + 2.3 + 3.4 + ... + 100.101] + 3.(2 + 4 + 6 + ... + 200)

     = 1.2.3 + 2.3.3 + 3.4.3 + ... + 100.101.3 + 3.(2 + 4 + 6 + ... + 200)

\(\Rightarrow\) A  =  100.101.105:3 = 353500

3 tháng 1 2018

N = 1 - 2/2.3 + 1 - 2/3.4 +.....+ 1 - 2/99.100

   = 98 - 2.(1/2.3 + 1/3.4 + ...... + 1/99.100)

   = 98 - 2.(1/2-1/3+1/3-1/4+....+1/99-1/100)

   = 98 - 2.(1/2-1/100)

   = 98 - 2.49/100 = 98-49/50 < 98

Mà 49/50 < 1

=> N > 98-1 = 97

=> 97 < N < 98

Tk mk nha