Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình ko chắc nhen
Xét mẫu:
2999/1 + 2998/2 + 2997/3 + ... + 1/2999
2999 + 2998/2 + 2997/3 + ... + 1/2999
( 1 + 2998/2 ) + ( 1 + 2997/3 ) + ... + ( 1 + 1/2999 ) + 1 [Giải thích nek:chia số tự nhiên 2999 thành 2999 số 1 rồi gộp vào các phân số]
3000/2 + 3000/3 + ... + 3000/2999 + 3000/3000
3000 . ( 1/2 + 1/3 + ... + 1/2999 + 1/3000 )
Giờ thì phần tử và phần trong ngoặc của mẫu đã giống nhau nên loại bỏ
=>N=1/3000
Ta có \(A=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{3000}}{\frac{2999}{1}+\frac{2998}{2}+...+\frac{1}{2999}}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{\left(1+1+...+1\right)+\frac{2998}{2}+...+\frac{1}{2999}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{\left(1+\frac{2998}{2}\right)+\left(1+\frac{2997}{3}\right)+...+\left(1+\frac{1}{2999}\right)+\frac{3000}{3000}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{\frac{3000}{2}+\frac{3000}{3}+...+\frac{3000}{3000}}\)
= \(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{3000\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}\right)}=\frac{1}{3000}\)
Vậy A= \(\frac{1}{3000}\)
Đề là 1/3000 nhé ~
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}}{\frac{2999}{1}+\frac{2998}{2}+\frac{2997}{3}+...+\frac{1}{2999}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}}{\left(\frac{2998}{2}+1\right)+\left(\frac{2997}{3}+1\right)+...+\left(\frac{1}{2999}+1\right)+1}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}}{\frac{3000}{2}+\frac{3000}{3}+....+\frac{3000}{2999}+\frac{3000}{3000}}\)
\(=\frac{1}{3000}\)
Câu 1:
B = \(\frac{2999}{1}+\frac{2998}{2}+\frac{2997}{3}+...+\frac{1}{2999}\)
= \(\frac{3000-1}{1}+\frac{3000-2}{2}+\frac{3000-3}{3}+...+\frac{3000-2999}{2999}\)
= \(\left(\frac{3000}{1}+\frac{3000}{2}+\frac{3000}{3}+...+\frac{3000}{2999}\right)-\left(\frac{1}{1}+\frac{2}{2}+\frac{3}{3}+...+\frac{2999}{2999}\right)\)
= \(3000+3000.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2999}\right)-2999\)
= \(3000\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2999}\right)+\frac{3000}{3000}\)
= \(3000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}}{3000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}\right)}=\frac{1}{3000}\)
a)\(3^{1989}=3^{1988}.3=\left(3^4\right)^{497}.3=\left(...1\right).3=\left(...3\right)\)
b)\(2^{2999}+3^{2999}=2^{4.749}.2^3+3^{4.749}.3^3=\left(...6\right).8+\left(...1\right).27\)
\(=\left(...8\right)+\left(...7\right)\)
\(=\left(...5\right)\)
Xét mẫu :
\(\frac{2999}{1}+\frac{2998}{2}+.....+\frac{1}{2999}\)
=\(\left(1+\frac{2998}{2}\right)+\left(1+\frac{2997}{3}\right)+....+\left(1+\frac{1}{2999}\right)+1\)
=\(\frac{3000}{2}+\frac{3000}{3}+.....+\frac{3000}{2999}+\frac{3000}{3000}\)
=\(3000\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{3000}\right)\)
Thay vào ta có:
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}}{3000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{3000}\right)}\)
=\(\frac{1}{3000}\)