\(10^{234},10^{2002},10^{2017}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2016

Tính cái này là tính ra số lun ak???

8 tháng 11 2016

Bài này cũng dễ thôi bạn (hình như có cả nhận xét nữa)

Nhận xét nó đơn giản thôi bạn: Số chữ số 0 đứng sau bằng đúng số mũ (cả tính mình tổng hợp trong ý này luôn)

\(\Rightarrow10^{234}=10...0\) (234 chữ số 0)

\(\Rightarrow10^{2002}=10...0\) (2002 chữ số 0)

\(\Rightarrow10^{2017}=10...0\) (2017 chữ số 0)

 

7 tháng 11 2016

mik chả hiểu dấu phẩy là gì ????

7 tháng 11 2016

dấu phẩy là ngăn cách giữa 2 số thôiucche

6 tháng 5 2017

Ta có:

\(\frac{2017^{10}+1}{2017^{10}-1}=1+\frac{2}{2017^{10}-1}\)

Lại có: 

\(\frac{2017^{10}-1}{2017^{10}-3}=1+\frac{2}{2017^{10}-3}\)

Vì \(1+\frac{2}{2017^{10}-1}< 1+\frac{2}{2017^{10}-3}\)

Nên \(\frac{2017^{10}+1}{2017^{10}-1}< \frac{2017^{10}-1}{2017^{10}-3}\)

Vậy \(\frac{2017^{10}+1}{2017^{10}-1}< \frac{2017^{10}-1}{2017^{10}-3}\)

                                                                                  

6 tháng 5 2017

Ta có

\(\frac{2017^{10}+1}{2017^{10}-1}=\frac{2017^{10}-1+2}{2017^{10}-1}=1+\frac{2}{2017^{10}-1}\)
\(\frac{2017^{10}-1}{2017^{10}-3}=\frac{2017^{10}-3+2}{2017^{10}-3}=1+\frac{2}{2017^{10}-3}\)
\(\Rightarrow1+\frac{2}{2017^{10}-1}< 1+\frac{2}{2017^{10}-1}\)
\(\Rightarrow\frac{2017^{10}+1}{2017^{10}-1}< \frac{2017^{10}-1}{2017^{10}-3}\)

19 tháng 4 2017

\(A=\dfrac{10^{2017}-2}{10^{2017}+1}< 1\)

\(\Rightarrow B=\dfrac{10^{2017}-2}{10^{2017}+1}< \dfrac{10^{2017}-2+2}{10^{2017}+1+2}=\dfrac{10^{2017}}{10^{2017}+3}=A\)

Vậy A > B

19 tháng 4 2017

\(A< 1\)

\(\Rightarrow A< \dfrac{10^{2017}-2+2}{10^{2017}+1+2}=\dfrac{10^{2017}}{10^{2017}+3}=B\)

Vậy A < B

18 tháng 5 2017

ta thấy:

\(B< 1\Rightarrow B< \frac{10^{2002}+1+9}{10^{2003}+1+9}=\frac{10^{2002}+10}{10^{2003}+10}=\frac{10\left(10^{2001}+1\right)}{10\left(10^{2002}+1\right)}=\frac{10^{2001}+1}{10^{2002}+1}=A\)

=>B<A

vậy.......

18 tháng 5 2017

Ta có:

\(A=\frac{10^{2001}+1}{10^{2002}+1}\Rightarrow10A=\frac{10\left(10^{2001}+1\right)}{10^{2002}+1}=\frac{10^{2002}+10}{10^{2002}+1}=\frac{10^{2002}+1+9}{10^{2002}+1}=1+\frac{9}{10^{2002}+1}\)

\(B=\frac{10^{2002}+1}{10^{2003}+1}\Rightarrow10B=\frac{10\left(10^{2002}+1\right)}{10^{2003}+1}=\frac{10^{2003}+10}{10^{2003}+1}=\frac{10^{2003}+1+9}{10^{2003}+1}=1+\frac{9}{10^{2003}+1}\)

Vì \(\frac{9}{10^{2002}+1}>\frac{9}{2^{2003}+1}\Rightarrow1+\frac{9}{10^{2002}+1}>1+\frac{9}{2^{2003}+1}\Rightarrow10A>10B\Rightarrow A>B\)

Vậy A > B

19 tháng 4 2017

\(A>B\)

Đúng 100%

Đúng 100%

Đúng 100%

19 tháng 4 2017

Có \(A=\frac{10^{2017}+1-3}{10^{2017}+1}=1-\frac{3}{10^{2017}+1}\)

\(B=\frac{10^{2017}+3-3}{10^{2017}+3}=1-\frac{3}{10^{2017}+3}\)

Có 102017+1<102017+3

=> \(\frac{3}{10^{2017}+1}>\frac{3}{10^{2017}+3}\)

=>A<B

3 tháng 1 2018

\(A=\dfrac{10^{2001}+1}{10^{2002}+1}\Leftrightarrow10A=\dfrac{10^{2002}+10}{10^{2002}+1}=1+\dfrac{9}{10^{2002}+1}\)

\(B=\dfrac{10^{2002}+1}{10^{2003}+1}\Leftrightarrow10B=\dfrac{10^{2003}+10}{10^{2003}+1}=1+\dfrac{9}{10^{2003}+1}\)

Từ đó suy ra \(10A>10B\) hay \(A>B\)

3 tháng 1 2018

Áp dụng bất đẳng thức :\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\) ta có :

\(B=\dfrac{10^{2002}+1}{10^{2003}+1}< \dfrac{10^{2002}+1+9}{10^{2003}+1+9}=\dfrac{10^{2002}+10}{10^{2003}+10}=\dfrac{10\left(10^{2001}+1\right)}{10\left(10^{2002}+1\right)}=\dfrac{10^{2001}+1}{20^{2002}+1}=A\)

\(\Leftrightarrow A>B\)

12 tháng 4 2019

Ta c/m bài toán phụ:

Giả sử a<b (a,b\(\in\)N; b\(\ne\)0)

So sánh \(\frac{a}{b}\) với \(\frac{a+m}{b+m}\) (m\(\in\)N*)

Có: \(\frac{a}{b}=\frac{a\left(b+m\right)}{b\left(b+m\right)}=\frac{ab+am}{b\left(b+m\right)}\)

\(\frac{a+m}{b+m}=\frac{b\left(a+m\right)}{b\left(b+m\right)}=\frac{ab+bm}{b\left(b+m\right)}\)

Vì a<b \(\Rightarrow\) am<bm (m\(\in\)N*) \(\Rightarrow\) ab+am<ab+bm

\(\Rightarrow\frac{ab+am}{b\left(b+m\right)}< \frac{ab+bm}{b\left(b+m\right)}\) hay \(\frac{a}{b}< \frac{a+m}{b+m}\)

Áp dụng bài toán trên ta có:

\(B=\frac{10^{2002}+1}{10^{2003}+1}< \frac{10^{2002}+1+9}{10^{2003}+1+9}=\frac{10^{2002}+10}{10^{2003}+10}=\frac{10\left(10^{2001}+1\right)}{10\left(10^{2002}+1\right)}=\frac{10^{2001}+1}{10^{2002}+1}=A\)

\(\Rightarrow B< A\)

Vậy B<A

21 tháng 3 2018

bằng nhau

15 tháng 3 2018

Anh hiền àaaaaaaaaaaaaaaaaaaaaaaaaa

15 tháng 3 2018

Tường đây