Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{2017^{10}+1}{2017^{10}-1}=1+\frac{2}{2017^{10}-1}\)
Lại có:
\(\frac{2017^{10}-1}{2017^{10}-3}=1+\frac{2}{2017^{10}-3}\)
Vì \(1+\frac{2}{2017^{10}-1}< 1+\frac{2}{2017^{10}-3}\)
Nên \(\frac{2017^{10}+1}{2017^{10}-1}< \frac{2017^{10}-1}{2017^{10}-3}\)
Vậy \(\frac{2017^{10}+1}{2017^{10}-1}< \frac{2017^{10}-1}{2017^{10}-3}\)
Ta có
\(\frac{2017^{10}+1}{2017^{10}-1}=\frac{2017^{10}-1+2}{2017^{10}-1}=1+\frac{2}{2017^{10}-1}\)
\(\frac{2017^{10}-1}{2017^{10}-3}=\frac{2017^{10}-3+2}{2017^{10}-3}=1+\frac{2}{2017^{10}-3}\)
\(\Rightarrow1+\frac{2}{2017^{10}-1}< 1+\frac{2}{2017^{10}-1}\)
\(\Rightarrow\frac{2017^{10}+1}{2017^{10}-1}< \frac{2017^{10}-1}{2017^{10}-3}\)
Vì \(A=\dfrac{10^{2017}-2}{10^{2017}+1}< 1\)
\(\Rightarrow B=\dfrac{10^{2017}-2}{10^{2017}+1}< \dfrac{10^{2017}-2+2}{10^{2017}+1+2}=\dfrac{10^{2017}}{10^{2017}+3}=A\)
Vậy A > B
Vì \(A< 1\)
\(\Rightarrow A< \dfrac{10^{2017}-2+2}{10^{2017}+1+2}=\dfrac{10^{2017}}{10^{2017}+3}=B\)
Vậy A < B
ta thấy:
\(B< 1\Rightarrow B< \frac{10^{2002}+1+9}{10^{2003}+1+9}=\frac{10^{2002}+10}{10^{2003}+10}=\frac{10\left(10^{2001}+1\right)}{10\left(10^{2002}+1\right)}=\frac{10^{2001}+1}{10^{2002}+1}=A\)
=>B<A
vậy.......
Ta có:
\(A=\frac{10^{2001}+1}{10^{2002}+1}\Rightarrow10A=\frac{10\left(10^{2001}+1\right)}{10^{2002}+1}=\frac{10^{2002}+10}{10^{2002}+1}=\frac{10^{2002}+1+9}{10^{2002}+1}=1+\frac{9}{10^{2002}+1}\)
\(B=\frac{10^{2002}+1}{10^{2003}+1}\Rightarrow10B=\frac{10\left(10^{2002}+1\right)}{10^{2003}+1}=\frac{10^{2003}+10}{10^{2003}+1}=\frac{10^{2003}+1+9}{10^{2003}+1}=1+\frac{9}{10^{2003}+1}\)
Vì \(\frac{9}{10^{2002}+1}>\frac{9}{2^{2003}+1}\Rightarrow1+\frac{9}{10^{2002}+1}>1+\frac{9}{2^{2003}+1}\Rightarrow10A>10B\Rightarrow A>B\)
Vậy A > B
Có \(A=\frac{10^{2017}+1-3}{10^{2017}+1}=1-\frac{3}{10^{2017}+1}\)
\(B=\frac{10^{2017}+3-3}{10^{2017}+3}=1-\frac{3}{10^{2017}+3}\)
Có 102017+1<102017+3
=> \(\frac{3}{10^{2017}+1}>\frac{3}{10^{2017}+3}\)
=>A<B
\(A=\dfrac{10^{2001}+1}{10^{2002}+1}\Leftrightarrow10A=\dfrac{10^{2002}+10}{10^{2002}+1}=1+\dfrac{9}{10^{2002}+1}\)
\(B=\dfrac{10^{2002}+1}{10^{2003}+1}\Leftrightarrow10B=\dfrac{10^{2003}+10}{10^{2003}+1}=1+\dfrac{9}{10^{2003}+1}\)
Từ đó suy ra \(10A>10B\) hay \(A>B\)
Áp dụng bất đẳng thức :\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\) ta có :
\(B=\dfrac{10^{2002}+1}{10^{2003}+1}< \dfrac{10^{2002}+1+9}{10^{2003}+1+9}=\dfrac{10^{2002}+10}{10^{2003}+10}=\dfrac{10\left(10^{2001}+1\right)}{10\left(10^{2002}+1\right)}=\dfrac{10^{2001}+1}{20^{2002}+1}=A\)
\(\Leftrightarrow A>B\)
Ta c/m bài toán phụ:
Giả sử a<b (a,b\(\in\)N; b\(\ne\)0)
So sánh \(\frac{a}{b}\) với \(\frac{a+m}{b+m}\) (m\(\in\)N*)
Có: \(\frac{a}{b}=\frac{a\left(b+m\right)}{b\left(b+m\right)}=\frac{ab+am}{b\left(b+m\right)}\)
\(\frac{a+m}{b+m}=\frac{b\left(a+m\right)}{b\left(b+m\right)}=\frac{ab+bm}{b\left(b+m\right)}\)
Vì a<b \(\Rightarrow\) am<bm (m\(\in\)N*) \(\Rightarrow\) ab+am<ab+bm
\(\Rightarrow\frac{ab+am}{b\left(b+m\right)}< \frac{ab+bm}{b\left(b+m\right)}\) hay \(\frac{a}{b}< \frac{a+m}{b+m}\)
Áp dụng bài toán trên ta có:
\(B=\frac{10^{2002}+1}{10^{2003}+1}< \frac{10^{2002}+1+9}{10^{2003}+1+9}=\frac{10^{2002}+10}{10^{2003}+10}=\frac{10\left(10^{2001}+1\right)}{10\left(10^{2002}+1\right)}=\frac{10^{2001}+1}{10^{2002}+1}=A\)
\(\Rightarrow B< A\)
Vậy B<A
Tính cái này là tính ra số lun ak???
Bài này cũng dễ thôi bạn (hình như có cả nhận xét nữa)
Nhận xét nó đơn giản thôi bạn: Số chữ số 0 đứng sau bằng đúng số mũ (cả tính mình tổng hợp trong ý này luôn)
\(\Rightarrow10^{234}=10...0\) (234 chữ số 0)
\(\Rightarrow10^{2002}=10...0\) (2002 chữ số 0)
\(\Rightarrow10^{2017}=10...0\) (2017 chữ số 0)