K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2016

Theo đề bài ta có:
\(\frac{x}{2,5}=\frac{y}{4}=\frac{z}{1,6}\) và \(4x-8y+5z=-56\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{2,5}=\frac{y}{4}=\frac{z}{1,6}=\frac{4x-8y+5z}{4\cdot2,5-8\cdot4+5\cdot1,6}=\frac{-56}{-14}=4\)

=>\(\begin{cases}x=10\\y=16\\z=6,4\end{cases}\)

9 tháng 10 2016

Theo bài ta có:

\(\frac{x}{2,5}\) = \(\frac{y}{4}\) = \(\frac{z}{1,6}\) và 4x - 8y + 5z = -56

Ta có: \(\frac{x}{2,5}\) = \(\frac{y}{4}\) = \(\frac{z}{1,6}\) = \(\frac{4x}{10}\) = \(\frac{8y}{32}\) = \(\frac{5z}{8}\) và

4x - 8y + 5z = -56

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{2,5}\) = \(\frac{y}{4}\) = \(\frac{z}{1,6}\) = \(\frac{4x}{10}\) = \(\frac{8y}{32}\) = \(\frac{5z}{8}\) = \(\frac{4x-8y+5z}{10-32+8}\)\(\frac{-56}{-14}\) = 4

Từ: \(\frac{x}{2,5}\) = 4 => x = 10

        \(\frac{y}{4}\) = 4 => y = 16

       \(\frac{z}{1,6}\) = 4 => z = 6,4

  Vậy => \(\begin{cases}x=10\\y=16\\z=6,4\end{cases}\)

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2.5}=\dfrac{y}{4}=\dfrac{z}{1.6}=\dfrac{4x-8y+5z}{4\cdot2.5-8\cdot4+5\cdot1.6}=4\)

=>x=10; y=16; z=6,4

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{15x-8y-5z}{15\cdot10-8\cdot6-5\cdot3}=\dfrac{435}{87}=5\)

=>x=50; y=30; z=15

c: x/5=y/-7

nên x/-5=y/7

=>x/-20=y/28

y/4=z/15 nên y/28=z/105

=>x/-20=y/28=z/105

=>\(\dfrac{x}{-20}=\dfrac{y}{28}=\dfrac{z}{105}=\dfrac{x+3y-4z}{-20+3\cdot28-4\cdot105}=-\dfrac{9}{178}\)

=>x=180/178=90/89; y=-126/89; z=-945/178

29 tháng 9 2017

Giải:

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{2,5}=\dfrac{y}{4}=\dfrac{z}{1,6}=\dfrac{4x}{10}=\dfrac{8y}{32}=\dfrac{5z}{8}=\dfrac{4x-8y+5z}{10-32+8}=\dfrac{-56}{-14}=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2,5}=4\\\dfrac{y}{4}=4\\\dfrac{z}{1,6}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4.2,5\\y=4.4\\z=4.1,6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=16\\z=6,4\end{matrix}\right.\)

Vậy \(x=10\); \(y=16\)\(z=6,4\).

Chúc bạn học tốt!

29 tháng 9 2017

Theo bài ra ta có:

\(\dfrac{x}{2,5}=\dfrac{y}{4}=\dfrac{z}{1,6}\)\(4x-8y+5z=-56\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2,5}=\dfrac{y}{4}=\dfrac{z}{1,6}=\dfrac{4x-8y+5z}{4.2,5-6.4+5.1,6}=\dfrac{-56}{-14}=4\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2,5}=4\Rightarrow x=10\\\dfrac{y}{4}=4\Rightarrow y=16\\\dfrac{z}{1,6}=4\Rightarrow z=6,4\end{matrix}\right.\)

Vậy .....

Chúc bạn học tốt!

23 tháng 9 2018

Vì 3 số x, y, z tỷ lệ với 2,5; 4; 1,6 

=> Ta có dãy tỉ số bằng nhau là:

x/2,5 = y/4 = z/1,6 

Áp dụng tính chất dãy tỉ số bằng nhau:

x/2,5 = y/4 = z/1,6 = 4x/10 = 8y/32 = 5z/8 = 4x - 8y + 5z/10 - 32 + 8 = -28/-7 = 4

=> x/2,5 = 4 => x = 4 . 2,5 = 10

      y/4 = 4 => y = 4.4 = 16

      z/1,6 = 4 => z = 4.1,6 = 6,4

Vậy x = 10

        y = 16

         z = 6,4

Mình không biết tính đúng không  nhưng dạng thì mình làm có vẻ đúng. k Cho mình nhé

28 tháng 9 2018

a) 5y = 72

=> y = 72/5

2x = 3y

<=> 2x = 3 . 72/5

<=> 2x = 216 / 5

<=> x =108/5

3x - 7y + 5z = -30

<=> 3 . 108/5 - 7. 72/5 + 5z = - 30

<=> 324/5 - 504/5 +5z = -30

<=> 5z = 6

<=> x = 6/5 

28 tháng 9 2018

câu a đoạn cuối z = 6/5 nha 

b) x : y : z = 5 : 3 :4 

\(\Leftrightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\Leftrightarrow\frac{x}{5}=\frac{2y}{6}=\frac{z}{4}\)

Áp dụng t/c dãy tỉ số = nhau , ta có 

\(\frac{x}{5}=\frac{2y}{6}=\frac{z}{4}=\frac{x+2y-z}{5+6-4}=\frac{-121}{7}\)

=> x =-605/ 7

=> y = -363 / 7

=> z = -484 / 7

20 tháng 11 2021

Với các bài khá nâng cao như vậy bạn đăng tách ra nhé!

Answer:

a) Ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Ta đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)

Ta có: \(5z^2-3x^2-2y^2=594\)

\(\Rightarrow5.\left(5k\right)^2-3.\left(3k\right)^2-2.\left(4k\right)^2=594\)

\(\Rightarrow5.5^2k^2-3.3^2k^2-2.4^2k^2=594\)

\(\Rightarrow5.25k^2-3.9k^2-2.16.k^2=594\)

\(\Rightarrow125k^2-27k^2-32k^2=594\)

\(\Rightarrow k^2.\left(125-27-32\right)=594\)

\(\Rightarrow k^2.66=594\)

\(\Rightarrow k^2=9\)

\(\Rightarrow k=\pm3\)

Với \(k=3\Rightarrow\hept{\begin{cases}x=3.3=9\\y=3.4=12\\z=3.5=15\end{cases}}\)

Với \(k=-3\Rightarrow\hept{\begin{cases}x=\left(-3\right).3=-9\\y=\left(-4\right).3=-12\\z=\left(-5\right).3=-15\end{cases}}\)

20 tháng 11 2021

Answer:

b) \(3.\left(x-1\right)=2.\left(y-2\right)\Rightarrow6.\left(x-1\right)=4.\left(y-2\right)\)

Mà: \(4.\left(y-2\right)=3.\left(z-3\right)\)

\(\Rightarrow6.\left(x-1\right)=4.\left(y-2\right)=3.\left(z-3\right)\)

\(\Rightarrow\frac{6.\left(x-1\right)}{12}=\frac{4.\left(y-2\right)}{12}=\frac{3.\left(z-3\right)}{12}\Rightarrow\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}==\frac{\left(2x-2\right)+\left(3y-6\right)-z}{4+9-4}=\frac{2x-2+3y-6-z}{9}=\frac{\left(2x+3y-z\right)-\left(2+6\right)}{9}=\frac{50-8}{9}=\frac{14}{3}\)

\(\Rightarrow\hept{\begin{cases}x-1=2.\frac{14}{3}=\frac{28}{3}\\y-2=3.\frac{14}{3}=14\\z-3=4.\frac{14}{3}=\frac{56}{3}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{31}{3}\\y=16\\z=\frac{68}{3}\end{cases}}\)

c) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y-z}{18+16-15}=\frac{38}{19}=2\)

\(\Rightarrow\frac{x}{18}=2\Rightarrow x=18.2=36\)

\(\Rightarrow\frac{y}{16}=2\Rightarrow y=16.2=32\)

\(\Rightarrow\frac{z}{15}=2\Rightarrow z=15.2=30\)