K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2020

Ta có 

 \(\hept{\begin{cases}x\left(x+y+z\right)=7\\y\left(x+y+z\right)=-2\\z\left(x+y+z\right)=\frac{1}{2}\end{cases}}\)

\(\Leftrightarrow x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=7-2+\frac{1}{2}\)

\(\Leftrightarrow\left(x+y+z\right)^2=\frac{11}{2}\)

\(\Leftrightarrow(x+y+z)^2=(\sqrt{\frac{11}{2}})^2\)

\(\Rightarrow\orbr{\begin{cases}x+y+z=\frac{\sqrt{22}}{2}\\x+y+z=-\frac{\sqrt{22}}{2}\end{cases}}\)

Trường hợp 1 : \(x+y+z=\frac{\sqrt{22}}{2}\)

Thay vào các biểu thức ta có

   \(x\times\frac{\sqrt{22}}{2}=7\Rightarrow x=\frac{7\sqrt{22}}{11}\)

\(y\times\frac{\sqrt{22}}{2}=-2\Rightarrow y=-\frac{2\sqrt{22}}{11}\)

\(z\times\frac{\sqrt{22}}{2}=\frac{1}{2}\Rightarrow z=\frac{\sqrt{22}}{22}\)

Trường hợp 2 : \(x+y+z=-\frac{\sqrt{22}}{2}\)

Thay vào các biểu thức ta có

\(x\times-\frac{\sqrt{22}}{2}=7\Rightarrow x=-\frac{7\sqrt{22}}{11}\)

\(y\times-\frac{\sqrt{22}}{2}=-2\Rightarrow y=\frac{2\sqrt{22}}{11}\)

\(z\times-\frac{\sqrt{22}}{2}=\frac{1}{2}\Rightarrow z=-\frac{\sqrt{22}}{22}\)

    Vậy \(x=\frac{7\sqrt{22}}{11};y=-\frac{2\sqrt{22}}{11};z=\frac{\sqrt{22}}{22}\)

           \(x=-\frac{7\sqrt{22}}{11};y=\frac{2\sqrt{22}}{11};z=-\frac{\sqrt{22}}{22}\)

5 tháng 8 2020

Thanks bạn nhưng mk chưa học căn bậc 2

3 tháng 1 2021

Ko biết

3 tháng 1 2021

uk

 

26 tháng 10 2021

x254n3jsm3,s3333

2 tháng 1 2020

bài 1

-11

bài 2

1) -6

2) 11

2 tháng 1 2020

mk k ghi đề mà lm luôn nha

Bài 1:

-14 + 13 - 10 = -11

Bài 2: (thay x, y vào)

1) B =  - 3 + 7 + (-10) = -3 + 7 - 10 = -6

2) C = -2 - (-5) - (-8) = -2 + 5 + 8 = 11

14 tháng 6 2015

10/3                                

26 tháng 2 2017

10/3 đó