Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải:
Ta có = = 500 nên IK // BC ( = (đồng vị)
Mà KA = KC suy ra IA = IB = 10cm
Vậy x = 10cm
Bài giải:
Ta có \(\widehat{K}\)= \(\widehat{C}\) = 500 nên IK // BC (\(\widehat{K}\) =\(\widehat{C}\) (đồng vị)
Mà KA = KC suy ra IA = IB = 10cm
Vậy x = 10cm
Ta có \(AB//EF//GH//CD\) (cùng vuông góc AD)
Mà \(BF=FH\) nên \(AE=EG\)
Do đó EF là đtb hthang ABHG \((AB//GH)\)
\(\Rightarrow EF=\dfrac{AB+GH}{2}\Rightarrow AB+GH=20\left(cm\right)\\ \Rightarrow x+y=20\left(cm\right)\)
Cmtt suy ra GH là đtb hình thang EFCD \((EF//CD)\)
\(\Rightarrow y=GH=\dfrac{EF+CD}{2}=12\left(cm\right)\)
\(\Rightarrow x+12=20\\ \Rightarrow x=8\left(cm\right)\)
Áp dụng định lí đường trung bình của hình thang, ta có:
⇒ 24 + x = 32.2 = 64
⇒ x = 64 - 24 = 40 (cm)
Xét tam giác ABH vuông tại H có:
\(AH^2=AB^2-BH^2\left(Pytago\right)\)
\(\Rightarrow AH^2=15^2-12^2=81\Rightarrow AH=9\)
Xét tam giác AHC vuông tại H có:
\(HC^2=AC^2-AH^2\left(Pytago\right)\)
\(\Rightarrow x^2=41^2-9^2=1600\Rightarrow x=40\)
Áp dụng định lí Ta – lét vào tam giác ABC có MN//BC
Ta có: AM/AB = AN/AC ⇒ AM/( AB - AM ) = AN/( AC - AN ) ⇔ AM/BM = AN/NC
Hay 4/x = 5/3,5 ⇒ x = 4.3,5/5 = 2,8( cm )
Vậy x = 2,8( cm )
+ K̂ = Ĉ (= 50º)
⇒ IK // BC (Vì có hai góc đồng vị bằng nhau)
+ KA = KC (= 8cm) nên K là trung điểm AC
Đường thẳng IK đi qua trung điểm cạnh AC và song song với cạnh BC nên đi qua trung điểm cạnh AB
⇒ I là trung điểm AB
⇒ IA = IB hay x = 10cm.