Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(P=\dfrac{x^4-x^3-x+1}{x^4+x^3+3x^2+2x+2}\)
\(P=\dfrac{x^3\left(x-1\right)-\left(x-1\right)}{x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)}\)
\(P=\dfrac{\left(x^3-1\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x^2+2\right)}=\dfrac{\left(x-1\right)^2}{\left(x^2+2\right)}\)
Với : x # 1 thì : ( x - 1)2 luôn lớn hơn hoặc bằng 0
x2 + 2 > 0 với mọi x
Suy ra : \(P=\dfrac{\left(x-1\right)^2}{\left(x^2+2\right)}>0\)( với x # 1)
b) Tương tự
\(\text{ a) }\left(x-2\right)^3-x\left(x+1\right)\left(x-1\right)+6x\left(x-3\right)\\ =\left(x^3-6x^2+12x-8\right)-x\left(x^2-1\right)+6x^2-18x\\ =x^3-6x^2+12x-8-x^3+x+6x^2-18x\\ =\left(x^3-x^3\right)-\left(6x^2-6x^2\right)+\left(12x+x-18x\right)-8\\ =-5x-8\)
\(\text{b) }\left(x-2\right)\left(x^2-2x+4\right)\left(x+2\right)\left(x^2+2x+4\right)\\ =\left(x-2\right)\left(x^2+2x+2^2\right)\left(x+2\right)\left(x^2-2x+2^2\right)\\ =\left(x^3-2^3\right)\left(x^3+2^3\right)\\ =x^3\left(x^3+2^3\right)-2^3\left(x^3+2^3\right)\\ =x^6+8x^3-8x^3-2^6\\ =x^6-64\)
1/
\(B=\frac{\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}}{4}\)
\(=\frac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}}{4}\)
\(=\frac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}}{4}\)
\(=\frac{\left(3^8-1\right)\left(3^8+1\right)-3^{16}}{4}\)
\(=\frac{3^{16}-1-3^{16}}{4}=\frac{-1}{4}\)
2/
a, (x-5)2-(x+3)2=1
<=>(x-5+x+3)(x-5-x-3)=1
<=>-16.(x-1)=1
<=>x-1=-1/16
<=>x=15/16
b, (2x-1)2-(2x-3)2=4
<=>(2x-1+2x-3)(2x-1-2x+3)=4
<=>-8(x-1)=4
<=>x-1=-1/2
<=>x=1/2