K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

D=sin(pi+x)+sinx+cot(pi-x)+tan(pi/2-x)

=-sinx+sinx-cotx+cotx=0

NV
4 tháng 10 2020

1.

\(\Leftrightarrow3x=k\pi\Leftrightarrow x=\frac{k\pi}{3}\)

2.

\(\Leftrightarrow cos5x=0\Leftrightarrow5x=\frac{\pi}{2}+k\pi\Leftrightarrow x=\frac{\pi}{10}+\frac{k\pi}{5}\)

4.

\(cos3x+cosx+cos2x=0\)

\(\Leftrightarrow2cos2x.cosx+cos2x=0\)

\(\Leftrightarrow cos2x\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cosx=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

NV
4 tháng 10 2020

5.

\(sin6x+sin2x+sin4x=0\)

\(\Leftrightarrow2sin4x.cos2x+sin4x=0\)

\(\Leftrightarrow sin4x\left(2cos2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin4x=0\\cos2x=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{4}\\x=\pm\frac{\pi}{3}+k\pi\end{matrix}\right.\)

6. ĐKXĐ; ...

\(\Leftrightarrow tanx+tan2x=1-tanx.tan2x\)

\(\Leftrightarrow\frac{tanx+tan2x}{1-tanx.tan2x}=1\)

\(\Leftrightarrow tan3x=1\)

\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{3}\)

10 tháng 5 2017

\(A=\dfrac{tan^2a-sin^2a}{cot^2a-cos^2a}\)

\(A=\dfrac{\dfrac{sin^2a}{cos^2a}-sin^2a}{\dfrac{cos^2a}{sin^2a}-cos^2a}=\dfrac{sin^2a\left(\dfrac{1}{cos^2a}-1\right)}{cos^2a\left(\dfrac{1}{sin^2a}-1\right)}\)

\(A=\dfrac{sin^2a\left(\dfrac{1-cos^2a}{cos^2a}\right)}{cos^2a\left(\dfrac{1-sin^2a}{sin^2a}\right)}=\dfrac{sin^2a\left(\dfrac{sin^2a}{cos^2a}\right)}{cos^2a\left(\dfrac{cos^2a}{sin^2a}\right)}\)

\(A=\dfrac{\dfrac{sin^4a}{cos^2a}}{\dfrac{cos^4a}{sin^2a}}=\dfrac{sin^4a}{cos^2a}.\dfrac{sin^2a}{cos^4a}\)

\(A=\dfrac{sin^6a}{cos^6a}=tan^6a\)

NV
2 tháng 6 2019

Do \(\alpha\in\left(\frac{\pi}{2};\frac{3\pi}{4}\right)\Rightarrow sin\alpha>0;cos\alpha< 0;tan\alpha< 0\)

\(\frac{tana}{cota}=\frac{\sqrt{5}-1}{\sqrt{5}+1}\Leftrightarrow tan^2a=\frac{\sqrt{5}-1}{\sqrt{5}+1}=\frac{\left(\sqrt{5}-1\right)^2}{4}\Rightarrow tana=\frac{1-\sqrt{5}}{2}\Rightarrow cota=\frac{-1-\sqrt{5}}{2}\)

\(1+tan^2a=\frac{1}{cos^2a}\Rightarrow cos^2a=\frac{1}{1+tan^2a}=\frac{5+\sqrt{5}}{10}\)

\(\Rightarrow sin^2a=1-cos^2a=\frac{5-\sqrt{5}}{10}\)

\(sin2a=2sina.cosa=2tana.cos^2a=-\frac{2\sqrt{5}}{5}\)

Thay vào ta được:

\(P=...\)

Bạn tự thay số và bấm máy

NV
5 tháng 2 2020

\(\Leftrightarrow tan^2x-2+cot^2x+\frac{2}{tan2x}=0\)

\(\Leftrightarrow\left(tanx-cotx\right)^2+\frac{1-tan^2x}{tanx}=0\)

\(\Leftrightarrow\left(\frac{1-tan^2x}{tanx}\right)^2+\frac{1-tan^2x}{tanx}=0\)

\(\Leftrightarrow t^2+t=0\)